Problem A

Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.<br>
 

Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).<br>
 

Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.<br>
 

Sample Input
  
  
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
 

Sample Output
Case 1:
14 1 4

Case 2:
7 1 6

简单题意:
  给出一个序列,求出这个序列的最大和。
解题思路形成过程:
  第一次解决dp的问题,动态规划,也就是说,求出局部的最大和并保存起来。接下来就用本身和前面保存的最大和相比较,选出最大值,到最后就能得到结果。
感想:
  动态规划的思路,百变不离其宗,掌握了例题,就能一步一步做出最终的代码。
AC代码:
#include <iostream>
#include <cstdio>
using namespace std;
int main()
{
    int i,ca=1,t,s,e,n,x,now,before,max;
    scanf("%d",&t);
    while(t--)
    {
       scanf("%d",&n);
       for(i=1;i<=n;i++)
       {
         scanf("%d",&now);
         if(i==1)
         {
            max=before=now;
            x=s=e=1;
         }
         else {
             if(now>now+before)
             {
                before=now;
                x=i;
             }
             else before+=now;
              }
         if(before>max)
           {max=before,s=x,e=i;}
       }
       printf("Case %d:\n%d %d %d\n",ca++,max,s,e);
       if(t)printf("\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值