这篇报告是关于2024年大模型领域的人才状况的分析,主要内容包括:
-
人才供需:大模型领域的人才供需比为1.76,整体供大于求,但特定技术岗位如云计算、音视频算法、大模型算法等仍处于紧缺状态。
-
薪酬情况:大模型行业提供的薪酬涨幅相对理性,人才涨薪幅度多在30%-50%。
-
人才考量因素:高素质人才在选择企业时会考虑更多因素,如技术流派、模型架构、市场方向等。
-
人才分布:大模型人才主要集中在一线城市,北京在人才数量上领先。
-
企业招聘:大模型创业公司的人员规模相对较小,但对技术研发人才需求较大。
-
行业趋势:大模型行业仍在发展中,人才格局持续演变。
-
岗位需求:算法工程师、产品经理、自然语言处理等技术岗位是招聘的热门。
-
教育背景:大模型领域的岗位对学历要求较高,硕士及以上学历的岗位占比达到29.66%。
-
工作满意度:超过95%的职场人使用大模型工具后工作效率得到提升。
-
行业展望:大模型技术在未来职场中具有广泛的应用前景,尤其在文本和代码生成方面。
🏢 报告中提到的大模型人才主要集中在哪些行业?
报告中提到,大模型人才主要集中在以下行业:
-
互联网行业:互联网大模型岗位需求居首,招聘指数断层领先。
-
人工智能:人工智能行业对大模型人才也有较高的需求。
-
电子商务和新零售:新零售行业对大模型人才的需求排在第二位。
-
智能硬件
-
生活服务:新生活服务行业对大模型人才的需求量也相对较高。
-
金融科技:新金融服务行业也是大模型人才需求的重要领域。
-
游戏行业:游戏行业同样对大模型人才有较大需求。
-
通信行业
-
新能源汽车:新能源汽车行业也出现在大模型新发岗位量最高的行业TOP10中。
此外,报告还提到了一些具体的公司,如字节跳动、小红书、蚂蚁集团、美团、阿里巴巴、抖音集团、腾讯、华为、百度和零一万物等,这些公司在大模型领域的新发岗位量较高。
🤖 人工智能行业在大模型人才需求中扮演什么角色?
在报告中,人工智能行业在大模型人才需求中扮演着重要角色,具体体现在以下几个方面:
-
技术发展前沿:人工智能行业是大模型技术发展的前沿领域,对大模型人才的需求十分旺盛。
-
岗位需求:人工智能行业中的大模型岗位需求指数较高,说明该行业对大模型技术人才的招聘活动非常活跃。
-
技术创新:人工智能企业通常在大模型技术的研究与开发方面投入较多,需要大量专业人才来推动技术创新。
-
薪资水平:报告中提到的高薪岗位很多都集中在人工智能行业,显示出该行业对于大模型人才的重视和投入。
-
人才竞争:人工智能行业在大模型人才的竞争中处于有利地位,能够吸引和留住高素质的技术人才。
-
行业发展:人工智能行业的快速发展,特别是在算法、机器学习、深度学习等领域,需要大量具备大模型技术背景的专业人才。
-
企业布局:报告中提到的“大模型五虎”等人工智能企业在大模型人才的招聘和培养上表现突出,显示了这些企业在行业中的领导地位。
-
技术应用:人工智能行业中的企业通常在探索大模型技术在各种应用场景中的潜力,如自然语言处理、计算机视觉等,需要相关人才来实现这些应用。
综上所述,人工智能行业在大模型人才需求中不仅是一个关键的雇主,也是推动大模型技术发展和应用的重要力量。
💼 人工智能企业在招聘大模型人才时,通常看重哪些方面?
人工智能企业在招聘大模型人才时,通常会看重以下几个方面:
-
教育背景:偏好具有计算机科学、人工智能、数据科学、数学等相关领域的学士、硕士或博士学位。
-
技术能力:重视应聘者在机器学习、深度学习、自然语言处理、计算机视觉等大模型相关技术领域的知识和实践经验。
-
项目经验:关注应聘者是否参与过相关的大模型项目,以及在项目中的具体贡献和角色。
-
编程技能:要求应聘者具备扎实的编程基础,熟练掌握Python、Java、C++等编程语言。
-
创新能力:重视应聘者的创新思维和解决问题的能力,特别是在大模型技术快速变化的环境中。
-
学习能力:强调应聘者的快速学习能力,因为AI领域的技术和工具在不断进步。
-
团队合作:由于大模型项目通常需要跨学科合作,因此团队合作能力也是一个重要考量因素。
-
沟通能力:良好的沟通技巧可以帮助技术人才更有效地与团队成员、管理层以及其他利益相关者交流。
-
对新技术的关注:看重应聘者是否对最新的AI技术和行业动态保持关注,并能快速适应新技术。
-
成果记录:如果应聘者在学术界或工业界有显著成果,如发表论文、专利或获奖,这也是一个加分项。
-
对业务的理解:了解应聘者是否能够理解企业的业务需求,并能够将大模型技术应用于解决实际业务问题。
-
工作经验:对于高级职位,企业通常会考虑应聘者在相关领域的工作经验和成就。
企业在招聘时会综合考虑以上因素,以确保找到最适合其团队和项目需求的大模型人才。
🛠️ 在技术能力方面,除了机器学习和深度学习,还有哪些技能是他们特别看重的?
除了机器学习和深度学习,人工智能企业在招聘大模型人才时还会特别看重以下技术能力:
-
编程技能:熟练掌握一种或多种编程语言,如Python、Java、C++、Scala等,特别是Python在数据科学和机器学习领域非常流行。
-
数据处理:能够使用数据处理库和框架,如Pandas、NumPy、Apache Spark等,进行数据清洗、处理和分析。
-
算法开发:理解并能够实现复杂的算法,包括但不限于排序、搜索、动态规划、图算法等。
-
软件工程:具备软件开发的实践经验,包括代码版本控制(如Git)、单元测试、持续集成/持续部署(CI/CD)等。
-
并行计算:理解并能够利用并行计算资源,如GPU加速,优化算法和模型的性能。
-
云计算:熟悉至少一种云计算平台(如AWS、Azure、Google Cloud Platform)和相关服务。
-
数据可视化:能够使用数据可视化工具(如Matplotlib、Seaborn、Tableau)来展示数据分析结果。
-
数据库技能:理解数据库原理,熟练使用SQL以及NoSQL数据库,如MySQL、MongoDB、Redis等。
-
模型部署:了解如何将机器学习模型部署到生产环境,包括使用Docker容器、Kubernetes等技术。
-
知识提取:能够从非结构化数据中提取知识,如文本挖掘、自然语言处理(NLP)技能。
-
优化方法:熟悉各种优化算法,如梯度下降、随机梯度下降、遗传算法等。
-
数学和统计学:具备扎实的数学和统计学基础,这对于理解和改进机器学习模型至关重要。
-
模型评估和选择:理解不同的模型评估指标,如准确率、召回率、F1分数、AUC等,并能够选择合适的模型。
-
分布式系统:对于需要处理大数据集的AI应用,理解分布式系统的原理和实践是非常重要的。
-
安全性:了解机器学习模型和应用的安全性问题,如对抗攻击、数据泄露防护等。
这些技能有助于大模型人才在人工智能企业中胜任各种技术挑战和项目需求。
👉AGI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉AGI大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
👉AGI大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取