使用视觉注意力机制改进YOLOv5模型(一):YOLOv5-6.1的模型配置

1 前言

首先声明一下,本系列文章不是面向零基础的,在此之前需要会使用Pytorch、了解YOLOv5的结构、跑过YOLOv5的模型、使用过深度学习部署框架(例如OpenVINO、ONNX Runtime、TensorRT等),建议没有这些基础的同学,可以看上一个系列的教程

相关的源码下载、环境安装,可以参照上一个系列文章的第一篇,这里建议使用Python3.8,因为很多Python3.6.5太老了。

上一个系列的教程是介绍YOLOv5怎么使用,可以不需要知道模型的结构,这个系列不行,必须知道 ,因为这个系列需要修改结构。

本套教程可以使用YOLOv5-6.0、6.1、6.2和7.0的代码。6.1我们上个系列使用了,而YOLOv5-6.2相对于6.1,增加了图像分类、自动编译量化、GPU基准性能(精度和速度)导出、单GPU复现、苹果设备(M1/M2)支持等功能,YOLOv5-7.0在此基础上,增加了实例分割、Comet 日志记录和可视化集成等功能,并且自称是世界上速度最快、精度最高的实例分割网络(截止2022年11月22日发布,击败了当时所有的SOTA模型)。当然,我们暂时用不到那么多花里胡哨的功能,我们只需要先学会怎么改检测网络就行。

2 模型结构配置文件解读

Ultralytics公司的YOLO系列模型都是根据配置文件搭建网络的,如果我们想对模型结构进行修改,那么必须知道配置文件和模型结构的对应关系。
打开models/yolov5s.yaml,此为yolov5s的配置文件,其中backbone和head内容如下:

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

本来自己想写一个配置文件解读的文章,但看到这篇文章——YOLOv5基础 | 深度解析yolov5s.yaml配置文件后,感觉写的十分完美,该文章是基于YOLOv5-6.0写的,配置文件的每个细节都有具体的介绍,对SPPF结构还做了相应的实验,可谓深入浅出,本人感觉无法做到比他更好了,非常推荐看这篇文章。

我觉得文章中对SPP层的解释还不够明朗。

我第一次看到SPP层的时候(当时还在学YOLOX),脑海中存在的疑惑:同一个输入张量,经过多个池化层之后,为何还能进行concat,难道三个池化核的输出特征图,高宽都一样吗?后面debug之后才知道,对于不同的池化核,可以通过调整padding和stride,使得三个池化核输出的特征图高宽一致,因此可以进行concat。对于SPPF结构,文章作者从实验角度演示了SPPF与SPP层等效,且运行时间只有后者的不到一半。

实验代码如下(为了简便运算,这里省略了池化前后的卷积层):

import time
import torch
import torch.nn as nn


class SPP(nn.Module):
    def __init__(self):
        super().__init__()
        self.maxpool1 = nn.MaxPool2d(5, 1, padding=2)
        self.maxpool2 = nn.MaxPool2d(9, 1, padding=4)
        self.maxpool3 = nn.MaxPool2d(13, 1, padding=6)

    def forward(self, x):
        o1 = self.maxpool1(x)
        o2 = self.maxpool2(x)
        o3 = self.maxpool3(x)
        return torch.cat([x, o1, o2, o3], dim=1)


class SPPF(nn.Module):
    def __init__(self):
        super().__init__()
        self.maxpool = nn.MaxPool2d(5, 1, padding=2)

    def forward(self, x):
        o1 = self.maxpool(x)
        o2 = self.maxpool(o1)
        o3 = self.maxpool(o2)
        return torch.cat([x, o1, o2, o3], dim=1)


def main():
    input_tensor = torch.rand(8, 32, 16, 16)
    spp = SPP()
    sppf = SPPF()
    output1 = spp(input_tensor)
    output2 = sppf(input_tensor)

    print(torch.equal(output1, output2))

    t_start = time.time()
    for _ in range(100):
        spp(input_tensor)
    print(f"spp time: {time.time() - t_start}")

    t_start = time.time()
    for _ in range(100):
        sppf(input_tensor)
    print(f"sppf time: {time.time() - t_start}")


if __name__ == '__main__':
    main()

我在本地也做了一次实验,结果如下:

True
spp time: 0.9689846038818359
sppf time: 0.333345890045166

可以看到SPPF层,运行时间只有SPP层的三分之一多一点。

3 模型组件代码解读

看完刚刚推荐的文章,我们对配置文件已经有了初步了解,接下来我们来看看模型各个组件的源码。

backbone和head中,共出现了Conv、C3、SPPF、nn.Upsample、Concat和Detect六种结构,其中Conv、C3、SPPF、Concat的代码都以类的形式保存在models/common.py中,nn.Upsample则本身就是类,Detect则保存在models/yolo.py中。当然,common.py包含的类远远不止上面几种,但限于篇幅,我们不可能全部都讲,我们这里只讲在标准YOLOv5s中出现的几种。

(1)Conv

这是YOLOv5最基本的零件,我们随便打开结构图的某一部分,都可以看见Conv类:

在这里插入图片描述

上面示意图中的ConvBNSiLU即为Conv,在模块名下面的k1, s1, p0, c64k1, s1, p0, c64等,表示的是卷积的相关参数,例如,k1表示卷积核的大小为1,s1表示卷积核的步长为1,p0表示卷积时padding的像素个数,c64表示卷积核的输出通道为64。

从图中的模块名可以看到,它不但包含了卷积层,还包含了BN层和激活函数SiLU,我们找到Conv的代码:

class Conv(nn.Module):
    # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))

初始化方法中的c1, c2分别是卷积层的输入、输出通道数;g和d分别是分组卷积与空洞卷积的参数,因为YOLOv5s的标准模型用不到,所以我们这里不展开,感兴趣的小伙伴自己查资料;act用来确定使用什么样的激活函数,它可以是布尔值,也可以是nn.Module的对象,如果act=True,则使用默认的激活函数,即SiLU,如果act=False,则使用nn.Identity()来代替,即没使用激活函数,如果actnn.Module的对象,则说明这是自定义的激活函数。

代码中还出现了autopad函数,这个用来计算padding的该设置成多少,其代码如下:

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    # Pad to 'same' shape outputs
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

(2)C3

C3有两种,它们之间的区别在于所包含的BottleNeck是否有多连接(后面会具体介绍),两种C3的结构如下:

在这里插入图片描述
在这里插入图片描述

代码如下:

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
        # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

初始化参数中,n表示Bottleneck模块的数量,shortcut参数表示是否进行短连接,g是分组卷积参数,e是通道扩展倍数。self.cv3的输入通道之所以是2 * c_,是因为它的输入是两个分支Concat的结果,这两个分支的输出均为c_

(3)Bottleneck

C3的示意图和代码中还出现了Bottleneck,并且有两种,在backbone中使用的是Bottleneck1,在head中使用的是Bottleneck2,两者区别在于有没有短连接,它们的示意图如下:

在这里插入图片描述

类定义如下:

class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

初始化方法的参数含义和C3模块一致。

(4)SPPF

这个我们在前面演示过,原理已经懂了,但前面的程序不完整,这里给出完整的代码:

class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))

(5)Concat

其实这个结构没必要讲,就是将torch.cat函数封装了一下,代码如下:

class Concat(nn.Module):
    # Concatenate a list of tensors along dimension
    def __init__(self, dimension=1):
        super().__init__()
        self.d = dimension

    def forward(self, x):
        return torch.cat(x, self.d)

(6)Detect

这个类不在models/common.py中,而是在models/yolo.py中,这个类写了很长,我们不可能把完整代码贴过来,我这边只把初始化方法贴过来。

class Detect(nn.Module):
    # YOLOv5 Detect head for detection models
    stride = None  # strides computed during build
    dynamic = False  # force grid reconstruction
    export = False  # export mode

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.empty(0) for _ in range(self.nl)]  # init grid
        self.anchor_grid = [torch.empty(0) for _ in range(self.nl)]  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use inplace ops (e.g. slice assignment)
        
	def forward(self, x):
		pass
		
    def _make_grid(self, nx=20, ny=20, i=0):
        pass

初始化方法的参数中,nc是图像中目标的类别数,anchors是先验框的尺寸(就是配置文件里的anchors),ch是由每个检测头的输入通道数构成的列表。

在配置文件中,Detect只出现了一次,但实际上检测头有三个,这个类实际上定义了多个检测头,每个检测头都是self.m中的一个元素,我们可以debug一下看看:

In[2]: len(self.m)
Out[2]: 3

从YOLOv5-6.x开始,把原本属于后处理的anchorbox解析与高宽缩放移到模型内部处理了,就在Detect的forward方法中,这个说起来比较复杂了,我们这里不展开,知道这么回事就行。

(7)对模型对象进行Debug代码回溯

Detect类在models/yolo.py中,而不是在common.py中,我是怎么知道的,难道把所有源码都看一遍吗?项目这么大,我不可能把源码中的每个脚本都看一遍,深度学习算法工程师最忌讳的事情就是遍历源码,看源码是非常低效的事情,能不看源码尽量不看源码,比较推荐使用debug的方式,在关键节点打断点,通过断点栈帧回溯功能,找到源码中模型的创建位置。

我是在SPPF的__init__方法中打了断点,因为模型在创建过程中,肯定会执行SPPF的__init__方法。然后把数据配置好(参考上一个系列的第二篇文章),之后debug运行train.py(之所以运行train.py而不是detect.py,是因为我试了,debug运行detect.py时,SPPF的初始化方法不会中断,detect不行之后我才尝试train的),程序中断后,根据断点栈帧的Frames窗口,看是谁在调用它,结果发现是models/yolo.py的parse_model(d, ch)方法在调用它。

在这里插入图片描述
在这里插入图片描述

接着把SPPF__init__方法中的断点去掉,在parse_model(d, ch)中调用SPPF__init__方法的语句上打断点:

在这里插入图片描述

然后点击不断点击Resume Program(F9)按钮,直到变量窗口中Special Variables下的m变成<class '__main__.Detect'>为止:

在这里插入图片描述

点击截图中的3,进入到Detect的初始化方法,我们就能看见Detect类在哪里了:

在这里插入图片描述

除此之外,我们根据断点Frames,也可以看到创建模型是在train.py的哪一条语句中

在这里插入图片描述

使用Pycharm的Debug Frames,可以知道程序的调用关系,掌握这种回溯功能,使得我们分析程序,不需要从头开始一步步Debug,只需要找到关键节点,在关键节点上打断点就可以。

比如,我想知道train.py是在哪一步构建了模型,假如我事先不知道模型类Model在哪里,或者说我压根就不知道模型类的名称是啥,是Model,还是Net,还是Yolov5,又或者是其他名字,我总不可能把整个项目的代码都看一遍吧?但我知道新版的YOLOv5s它肯定使用了SPPF,那我就在SPPF的初始化方法上打断点,然后debug执行train.py程序,根据断点栈帧(Frames),反向确定YOLOv5s的模型是在哪个地方创建的,使用的类名是什么,类定义在哪里等。

我个人认为,源码是无底洞,我之前尝试过去看YOLOX的全工程源码,但源码经过层层封装,到底层就看不懂程序在干什么了。其实,任何一个大型软件工程项目,背后都是有一个团队在开发,团队的每个成员分工合作才有了这个项目。我们作为学习者,很难凭一人之力去对抗整个团队,一条一条地看源码就是在用有限的生命去追逐无限的细节。

那我们该如何学习新模型呢?学习一个新的模型,最应该做的事就是去看论文或者教程(博客或者视频,站在巨人的肩膀上),知道它的大致原理,然后看项目下面的readme,搞懂这个东西该怎么用,API是什么,那么大致就OK了。

如果想要改进别人的模型,该怎么弄呢?首先,需要明确的是,我们要改的模型必须是经典模型,比如YOLO系列,有改的价值,并且经典模型的代码工程化做的比较好,网上有比较多代码的解读,容易找到配置文件(或者其他容易入手的文件,可以称之为切入点文件),改起来也比较容易。对于非经典模型,特别是很难找到相关文档教程的模型,你想搞清楚它的结构(可能你都不知道这个模型是否使用了配置文件),那么只能从train.py一行一行读代码了,这个过程将是个噩梦。

对于源码,当我们想要了解某个具体细节(比如NMS)的时候,才推荐使用debug进入到源码的相应部分去看,这也不是全看源码,而是debug源码的其中一部分。

4 模块集成

经过上节的讲解,我们已经对配置文件有了基本的了解,现在我们来看看如何根据配置文件中的信息创建各个模块。

把配置文件中的各个模块串起来,是在models/yolo.py的parse_model(d, ch)方法中进行的,我们在该方法的第二条语句打断点:

在这里插入图片描述

随后使用debug运行train.py

在这里插入图片描述
parse_model(d, ch)方法中的ch参数是输入通道(通过断点栈帧回溯到Model类的初始化方法,注释中有说这个参数是输入通道数),而d则是从配置文件中解析出来的配置信息。进入parse_model函数后,先是从配置信息中获取anchor的个数,模型的输出通道(即每个预测框包含的变量个数),代码如下:

    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

接下来是通过循环解析backbone和head的参数,内容如下:

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings

接下来我们debug:

在这里插入图片描述

进入循环后,每次从配置信息中获取一条参数(f, n, m, args)。

当执行完m = eval(m) if isinstance(m, str) else m后,m将变成类对象:

在这里插入图片描述

接下来的for循环是将args中的内容(有可能为字符串)转换成python中的数据类型(或者对象)。

        for j, a in enumerate(args):
            try:
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
            except NameError:
                pass

如果m是C3或者Conv,那么需要在args前面加上输入通道和输出通道,如果是其他模块,则根据相应的规则组织参数。

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                 BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
            c1, c2 = ch[f], args[0]		# 当i为0时,及解析的为backbone的首行,则f为-1,ch为[3],args[0]为64
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m is Detect:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        else:
            c2 = ch[f]

总之,在m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)执行前,args已经按照各个模块的初始化方法配置好参数了。

接下来是创建模块,并把每个模块的通道数存入到指定列表:

        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)

这里m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)是创建模块;
i是模块序号,f是数据来源,type是模块类型,np是参数总量,m_.i, m_.f, m_.type, m_.np = i, f, t, np是将这些变量存到模型中;
随后save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)是将数据来源f保存到列表save中,这里f也有可能是列表,例如[[-1, 6], 1, Concat, [1]]x % i是为了保证x不大于i,也就是f或f中的元素不会大于i,若f为-1,则不存入到save中;
layers.append(m_)是将模块保存;
ch.append(c2)则是保存当前模块的输出通道,它是后续模块的输入通道,后续模块可以通过ch[f]查询得到。

最后函数返回两个值,一是将layers整合成nn.Sequential的结果,二是save中的序号排序后的结果。

    return nn.Sequential(*layers), sorted(save)

这里save的作用是什么,为什么要对其进行排序,单单看parse_model(d, ch)函数是看不出来的,这个要讲明白,需要分析整个Model类,个人感觉没必要。

本节介绍了配置信息解析函数parse_model(d, ch),该函数根据配置信息创建各个模块,但并没有把这些模块串起来,这个需要分析Model类的forward方法,这个工作量太大,且对我们修改网络结构帮助不大,我们只需要大致知道配置信息进入到for循环后是怎么处理的,走的是if的哪个分支,又是怎么根据处理后的参数创建模块的,知道这些足够了。

5 总结

本文是这个系列文章中最难最琐碎的,搞明白了如何根据配置文件创建YOLOv5s模型的各个模块,之后添加注意力机制就会变得很容易。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值