本文内容为个人在工作、学习和生活中的洞察和思考。
工作
- 有会议时,提前确认自己是否需要参加,不需要时,尽量不参加。
- 业务初期,可以点状试探算法在线下的应用,力保快速收到效果;发展到了一定阶段,就要去考虑如何建立系统化的能力。
- 领导能晋升的一个指标是团队内培养出了诸多优秀的成员。
- 算法开发时,针对所有必要的数据以及严重影响结果质量的数据,都要做数据检验;当数据缺失时,提示缺失的数据内容及其数据必要性的原因;对于非必要的数据,要有默认值,当数据缺失时,使用默认值。
- 算法开发时,明确可变和不可变参数,方便后期做参数个性化配置。
- 项目考核时,一般都会以KPI/OKR为主,制定KPI/ORK要谨慎,尽量明确和量化。如果需要做的项目,从头开始到完美收官,耗时较久,短期指标要明确和可量化,降低评估风险;一个评估周期内,可以多承担几个项目,防止某个项目由于外因没做好,降低了KPI的总分数;短周期项目和长周期项目,在衡量KPI上,需要折中;个人能力和经验,对KPI的影响大:学习和上升期,效率低,结果不如人意,应当理性面对,保持长期有耐心;从这个角度来看,新人的绩效低于老人,有一定的合理性。
- 小厂的缺点:(1)资源稀缺,大量精力耗费在处理资源稀缺本身。举个例子,做路径规划,没有地图信息,缺少导航距离,需要找到替代方案,还需要解决因为替代方案在很多情况下不等于真实导航距离引起的各类问题;(2)多以实现为目标,不以卓越为追求。对于有较高追求的人来说,是个束缚。
- 问题不要只停留在表面。领导提出的问题,可以不着急去回复,先思考他真正想了解的是哪些,哪些事情还可以继续延伸挖掘的,整理完问题回复后,力求系统成体系;同事和下属的问题,也不用急于答复,先耐心倾听,理解清楚对方的需求,然后一同分析,最终得到结论。
- 金字塔风格是工作中汇报和沟通的非常有效的方式:结论先行 + 上下对应 + 分类明晰 + 排列有序。
- 做项目时,(1)心态上,要长期有耐心。 一方面,系统需要经历从0到1的突破,以及从1到100的蜕变。另一方面,系统需要尽早落地,在实际的实践过程中,不断发现问题和完善自身。这两方面的基本现实,使得在落地过程中,特别是中前期,系统很容易遇到线下的挑战和质疑。要解决该问题,可以从三方面入手:(a)和线下解释清楚系统开发的基本规律,在中前期的重心在于解决最核心的问题,后期才能解决细节问题;(b)及时改进系统,以及及时反馈问题的处理进度,让线下知道他们的问题,得到了重视;(c)建立承受委屈和压力的勇气,不被一时的抱怨而打败。(2)实践上,要从简单模式开始,逐渐过渡到复杂模式。(3)技术上,根据业务的发展阶段去选用合适的算法,避免为了复杂而复杂。(4)数据上,要尽量建立全面的数据看板,从多个维度展示算法的效果。(5)迭代过程时,尽量设有数据的快照回测功能。业务质疑算法的合理性时,回测快照是高效地工具,来解释算法计算结果的原因。
- 管理的内核是爱,要具有普遍视野,有成就他们以及共同成长的心态。
- 身边的人成功,会有短暂的嫉妒心理是正常的。但是应该花更多精力去客观分析别人的优势,看看自己应该如何做才能有类似的成功。然后再转换思路,为他能取得不错的成绩而开心,毕竟也是物以类聚。
- 做策略算法的落地很难一步到位,直接达到全局最优的状态。可以从两方面入手:(1)业务方对策略算法的信任度是有限的,给他们展示结果前,做好自校验工作,确保已经没有明显的问题;(2)管理好业务方的预期,每次迭代的提升效果不一定要为全局最优,持续向好的过程就足够了。相比之下,一种常见的误区在于,为了表现自己的策略非常优秀,直接给出简单建模后求得的质量较高的优化方案,但是由于缺乏足够完善的实际业务约束,新方案不断被业务方挑战,业务方对算法的信任值也不断降低,最终导致算法无法很好得落地,甚至直接被弃用。
- 平时多和同事交流别人的项目内容,一方面可以提升自己的认知广度,另一方面还可以加深自己对业务的理解。
- 业务不一定要等技术准备好了才去做,要转换思路为:用业务的需求去倒逼技术的成长。
- 建模的目的:(1)将问题用数学化的语言表示;(2)便于理解和分析问题复杂度;(3)提供一种解决方案(直接求解器解决);(4)利用求解器找到问题的求解边界(算例规模);(5)为开发算法做准备并提供一个基准对比;(6)基于模型设计一些方法。
- 管理的4个境界:不管理,OKR管理,过程管理和培养人。
- 做好事情的SOP,一方面可以帮助自己把事情做好结构化,另一方面也是做好过程管理的高效工具。
- 发现原始数据有问题时,早沟通,早定解决方案。
- 算法开发前,先想清楚技术方案,然后再开始做。
- 四大名著,可以复读,形成确定的方法论体系,在给他人建议时,有助于体系化输出。
- 每个职位都是有价值的。如果要做好某一个服务,那服务中的每个模块都不能有短板。虽然如此,由于不同职位的门槛不一样,导致核心卡点或资源是不同的。每个模块在不同时期对业务的贡献大小,也是会随业务的发展现状而调整的。
- 撰写汇报文档时,要先想清楚观众最关注的事情是什么。
- 个人思考,更多是对问题本质的思考,而不是大家都知道的事情,或者其他琐碎的事情,更不是困难和风险。
- 个人周报的主要对象是直线leader,所以应该尽量用算法语言去描述。
- 多团队合作项目中,有需要别人做的事情,尽量让产品去沟通。
- 如果有临时需求要交给别人做,提前说清楚要做的事情以及预估时间。
- 要时刻准备向任何人阐述自己工作的价值,不能屈服于别人的猜疑。
- 算法优化后,应该先说算法指标提升了多少,再说对业务产生了哪些积极的影响。
- 机器学习模型优化的方向主要包括三个:训练集设计、特征增加或其他调整、模型替换。
- 每天的时间,不要被事情打的太碎,至少半小时内只专心做一件事。
- 目前自己擅长的是0-1的工作,对于1-N的工作,还缺少经验和方法论。
- 算法策略的价值有3种:流程自动化、指标更优或更全面的分析。
学习
- 看书时,找自己感兴趣的书;允许自己精读和泛读,甚至只读一部分;精力有限,要做全才,几乎是不可能的。
- pp一般指的是百分点,英文percentage point的缩写。
- 拒绝读书当然是一种愚蠢,但是因为读书而滋生出骄傲与傲慢是一种更大的愚蠢。
- 当你走向高尚时,会有人觉得你在装。你自己也有可能觉得你在装。但内心的真诚会告诉你,你和他们开始不一样。
- 知乎的初心:将每个人头脑中的知识、经验和见解都聚集起来,并为人人所用。
- 运筹优化的基本目标是降本增效,相比传统行业,互联网行业也普遍更加高效,所以运筹优化在互联网行业会有更大的发挥。
- 学习能产生快乐的前提是不着急变现,否则会产生压力。所以我们去做重要但不紧急的事情。
- 推进长远计划时,要先剖析清楚自己当前的现状。在先保证自己第一要务顺利进行的基础上,再看长远。既是长远,则不必贪多,同时最好结合当前的资源,调整长远计划中各项要点的优先级。
- 定律应该是规律,是那些不会因人的意志而转移的内容,包括社会的和自然的,如万有引力定律、规模效应。
- 运筹算法可能落地效果比较好的场景:实时算法,如骑手、司机派单。
- 个人核心竞争力是把显性知识变为隐性知识的能力;团队竞争力是把隐性知识变为显性知识的能力。
- 学习提供了一个小世界,供自己和作者同游。
- 我们之所以研究历史,不是为了要知道未来。而是要拓展视野,要了解现在的种种绝非自然,也并非无可避免。未来的可能性远超过我们的想象。
- 需要持续学习,打造属于自己的技术乐高。
生活
- 不好为人师。
- 长视者把目的当手段,短视者把手段当目的。企业的目的是赚钱,技术只是手段;员工的目的是技术,旨在提升个人竞争力。
- 允许自己虚度时光。
- 保持冷静、谦逊、人外有人的心态。