11、解决多种优化问题的递归神经网络方法

解决多种优化问题的递归神经网络方法

1. 引言

人工神经网络是一种基于生物神经系统的信息处理数学模型,具有存储经验知识并使其可被使用的自然倾向。其主要优势在于能够近似函数关系,尤其是非线性关系。神经网络已被应用于多种优化问题,且在有效解决这些问题方面展现出了潜力。

传统的神经网络模型大多只能解决特定类型的优化问题,而本文提出的网络使用一种独特的架构,能够处理多种优化问题。该方法采用了一种改进的Hopfield网络,其平衡点代表优化问题的解。此网络的优化过程分两个阶段进行,由两个能量函数表示,即Econf和Eop。Econf是一个约束项,将与问题相关的所有结构约束组合在一起;Eop是一个优化项,引导网络输出到达对应最优解的平衡点。

使用改进的Hopfield网络的主要优点包括:
- 网络的内部参数可通过有效子空间技术明确获得,无需使用训练算法进行调整。
- 有效子空间技术的应用能够找到可行解,这些解源自Econf对所有结构约束的限制。
- 优化和约束项不使用惩罚参数加权,避免影响平衡点的精度和收敛过程。
- 对于所有类型的优化问题,采用相同的方法推导网络的内部参数。
- 在工业应用中,该网络在模拟硬件(使用运算放大器)和数字硬件(使用数字信号处理器)中都易于实现。

2. 改进的Hopfield网络

Hopfield网络是单层网络,节点之间存在反馈连接。在标准情况下,节点完全连接。连续时间网络中第i个神经元的节点方程为:
[
\dot{u} i(t) = - \eta u_i(t) + \sum {j=1}^{N} T_{ij} v_j(t) + b

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值