同步博弈与序贯博弈是博弈论中的两种主要类型,它们的区别在于博弈者在决策时对其他博弈者行动的了解程度:
- 同步博弈:博弈者做决策时,不能知道其他博弈者的选择,所有博弈者在同一时刻做出决策。虽然每个玩家知道其他人也面临相同的选择困境,但无法通过观察其他玩家的行为来调整自己的策略。例如,“石头剪刀布”是典型的同步博弈。
- 解决方式:同步博弈通常使用纳什均衡来分析,确保每个博弈者都选择最佳策略,在此情况下,无人会偏离自己的选择。
- 序贯博弈:博弈者按顺序轮流做出决策,每个博弈者可以根据对方之前的行动来调整自己的策略。这样,他们对其他玩家的选择有更多的信息,从而能够做出更具针对性的决策。
- 解决方式:序贯博弈的分析通常采用扩展形式(决策树)来表示游戏中的所有可能情况,并且使用逆向归纳法(从结果推导到最优决策)来寻找最优策略。
在游戏创新和设计中的应用
在游戏设计中,将同步博弈和序贯博弈的概念应用于玩家决策的结构设计,能够为游戏带来更多的层次和深度。以下是如何应用这些原理的几个方向:
- 设计决策机制:
- 在同步博弈的情况下,玩家的决策是在完全不知情的状态下做出的,可以设计类似**“战斗对战”、“资源争夺”等情境,玩家在相同时间选择行动,但不知道对方的决策,像“石头剪刀布”这样的游戏机制就可以通过同步博弈体现。此时,可以依赖于纳什均衡**等策略让每个玩家都面临一定的权衡,增强博弈的深度。
- 在序贯博弈的情况下,可以让玩家在轮流决策时积累信息。比如,设计回合制战斗游戏(如国际象棋、策略类RPG游戏),玩家可以通过观察对方的选择来预测其下一步行动,并做出最优策略。
- 信息透明度与策略:
- 同步博弈通常需要玩家做出不完全信息的决策,这在设计时可以通过信息不对称来增加游戏的挑战性,例如卡牌对战游戏,玩家不完全知道对方的牌,必须凭经验与判断来推测对方的策略。
- 序贯博弈则可以让玩家在每一轮决策中逐步获取更多的信息,从而根据历史数据预测对手的未来行动。这可以应用于战略类游戏,如玩家在每一轮决策中都能看到敌人过去的行动,并基于此做出下一步最优选择。
- 情境设置和游戏结构:
- 在同步博弈中,竞速类游戏(例如赛车或比赛)可以设计为“所有玩家同时出发”,而在序贯博弈中,则可以设定“每个玩家轮流出发”,并根据对方的表现来调整自己的策略。
- 多人合作游戏(如团队类对战游戏)中,可以通过同步博弈来让所有玩家在一个决策点同时做出选择,增加博弈的复杂性与竞争性。而在单人冒险类游戏中,通常是序贯博弈,玩家根据不断变化的情势做出逐步决策。
- 逆向归纳法与游戏流程:
- 在设计游戏时,使用逆向归纳法帮助玩家推理出如何在最终达到目标时取得最优结果。例如,在设计一个复杂的战略游戏时,设计师可以先确定游戏的最终目标(如征服全地图或击败强敌),然后推导出玩家在过程中需要做出的最佳决策,确保每个环节的决策都能朝着这个最终目标推进。
实际案例
- 同步博弈应用:在一个卡牌对战游戏中,玩家的决策(出牌、攻击等)是在同一回合内进行的,但无法看到对方的选择。玩家通过推测对方可能出什么卡牌来做出自己的选择。此时,博弈双方都是处于同步博弈状态,策略上依赖于对方决策的猜测。
- 序贯博弈应用:在国际象棋中,每个玩家按顺序行动,且每一步都会影响对方的后续选择。这种序贯博弈的机制让玩家能根据对方的行动来预测并调整自己的策略,以达到最优效果。
总结
- 同步博弈和序贯博弈的区分在游戏设计中至关重要,决定了玩家的决策机制与博弈结构。同步博弈适合快速反应、信息不对称的决策模式,适用于对抗性强的即时游戏;而序贯博弈适合需要信息积累和策略规划的游戏,适用于具有更复杂战略深度的游戏。通过理解这些原理,可以设计出更加丰富和具有挑战性的游戏玩法。
原文:
原理13:采取行动
游戏中的博弈,依据博弈各方做决定或采取行动的先后关系,可以被区分为“同步博弈”(Simultancous game)或“序贯博弈”(Sequential game)。区分这两种类型是非常必要的,因为它们的策略是不一样的,也就需要不同的设计考量。
在同步博弈中,博弈者必须考虑其他人会采取什么样的行动,但是不能肯定他们到底会做什么。每个玩家同时也知道博弈中的每个人都面临着同样的问题。像“其他玩家都在做什么”这样关键的信息会对每一步走下来的后果产生影响,但这些信息对于博弈者在做自己每一步的决策时并不可见(参见原理9“信息”和原理 27“信息透明”)。
在序贯博弈中,每个博弈者能得到更多的信息。他们能通过其他人刚刚采取的行动,对其下一步行动进行可靠的预测。
同步博弈有可能是在时间上真正同步进行的,比如“石头剪刀布”(参见原理 22“石头剪刀布”);也有可能不是,博者各自在不同的时间进行自己的行动,只是他们在采取自己的行动时不知道其他博弈者的决策(这在实际效果上相当于“同步的”)。这类博弈是最容易通过一个正则形式(NormalForm)表格来表示“得益”(参见原理 19“得益”)的。同步博弈可以用“纳什均衡”(参见原理17“纳什均衡”)来解决(博弈各方都有一个单一的最佳选择,并且如果基于所有选择可能带来的后果改变战略也不会得到更好的结果)囚徒困境悖论也是一个同步博弈的例子(参见原理20“囚徒困境”悖论中的正则形式表格)。
序贯博弈要求博弈各方每一步都要轮流做出决策,如国际象棋。同时他们对于其他人之前做出的决定至少是部分知情的(他们掌握的有可能是不完全信息–参见原理9“信息”)。在多人博弈中,了解第一个行动会有哪些优势(或劣势),以及玩家在这个轮流的顺序中的哪一个点需要作出他们自己的决策,也是非常重要的。也就是说,谁已经作出了决策。
这类博弈的“得益”(参见原理19“得益”)通常通过扩展形式(Extensive Form)或决策树(Decision Tree)来表示。扩展形式基于可用信息的所有组合列举每一个玩家在每一次机会面前决策时的所有可能性,及其结果的得益。即使是在最简单的游戏里,这也会是非常复杂的数学运算。
序贯博弈通常要用逆向归纳法来解决。这个过程先确定所期望的结果,然后通过决策树逆向推导出能最终带来这个结果的决策。在理想的情况下,玩家也会基于对方之前的行动带来的结果,在树的任何一个分支去判断他们此刻最佳的行动方针。这使他们能够在游戏中的任何时候做出最优化的决定。这种反向规划过程基于理性人假设(每个博弈者都朝着为自己带来最佳结果的目标努力),是由约翰·冯·诺依曼(JohnvonNeumann)和奥斯卡·摩根斯坦(OskarMorganstern)在20世纪中叶引入游戏理论的。