原题:
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
大意:
你是一个贼,现在又给你n个房子。每个房子里面的有不同的现金,在不允许你偷相连的两个房子的情况下,问你最多能偷多少钱?
class Solution
{
int dp[100000];
public:
int rob(vector<int>& nums)
{
if(nums.size()==0)
return 0;
memset(dp,0,sizeof(dp));
dp[0]=nums[0];
dp[1]=max(nums[1],dp[0]);
int len=nums.size();
for(int i=2;i<len;i++)
dp[i]=max(dp[i-2]+nums[i],dp[i-1]);
return dp[len-1];
}
};
解答:
在cf上做过类似的,转移方程非常好想。就是考虑当前的房子下手还是不下手,如果下手dp[i-2]+nums[i]
如果不下手,就是dp[i-1],取最大值dp[i]=max(dp[i-2]+nums[i],dp[i-1])即可。
注意,数据空的时候输出0