[ComfyUI]真人转动漫/动漫转真人,一套工作流全部搞定

大家好!今天我要向大家介绍一个超级有趣的话题——[ComfyUI]真人转动漫/动漫转真人!这个工具能够让你轻松实现真人视频和动漫的转换,让你的创作更加有趣和独特。

想象一下,你有一个强大的AI助手,它能够根据你的视频内容生成出令人惊叹的动漫风格作品。无论是电影、电视剧还是个人视频,【ComfyUI】视频转动漫都能够轻松实现。这个工具就像是你的私人动漫创作伙伴,能够根据你的需求和喜好,将你的视频变成各种风格的动漫作品。

而且,这个工具的效果简直无敌!无论是色彩的处理、线条的流畅度还是整体的艺术效果,都能够让你惊叹不已。如果你对这个工具的效果有任何质疑,那么请大胆尝试,它会让你眼前一亮!

此外,[ComfyUI]还提供了一套完整的动漫转真人工作流,让你能够轻松将动漫角色转换成真人形象,或者将真人视频转换成动漫风格。无论是想将你的偶像变成动漫角色,还是将你的创意动漫作品变成真实的视频,这套工作流都能够轻松实现。

所以,如果你对视频转动漫充满好奇,或者想要让你的视频更加独特和吸引人,那就赶紧试试[ComfyUI]真人转动漫/动漫转真人吧!它将会给你带来无尽的惊喜和乐趣!

先看效果图吧,先来真人转动漫

再来动漫转真人,改个摄影大模型

02

工作流介绍

工作流已经发布到liblib,可以在线运行:

https://www.liblib.art/modelinfo/776b517178c747d4bdf4df2148f81238?from=personal_page

同时想要大模型和工作流的看文章尾部获取。

这套真人和动漫互转工作流没有用到复杂的插件,最多就一个面部细化,再加二次采样。

完整工作流如下图

模型这里用到两个,分别是:

  • Animagine XL V3.1

  • 万享XL_超写实摄影V8.4

想要真人转动漫,就用Animagine XL大模型,想要动漫转真人改用万享XL_超写实摄影大模型即可,或者其他自己有的模型都可以尝试,不同模型对应的参数不大一样,这个自己调整即可。

第一步:先对图片处理,做一下尺寸缩放,因为我们用的是SDXL模型,所以至少要有一个边要1024是比较适合的。

我们这里放大两倍后再限制图像区域到1024,这样就能保证图片适合。

第二步:先采样一次,这里记得降噪调整成0.5,提示词正负面都填上,我本来还有用反推插件来反推图片生成提示词,最后发现效果不理想,还是改成直接用一套质量词效果最好:

Clarity Enhancement, Increased Detail, Detail Enhancement, High Resolution, Very High Resolution, Wallpaper, Background Bokeh/Bulk, Depth of Field (Coordinated People Scene),

greyscale, monochrome, cropped, worst quality, low quality, jpeg artifacts, old, table, crop, ugly, wind, messy ,card, animal, face coved, hard light, sad, Cross-eyed, anger, handing, text,word,name,logo

第三步:这一步要用到面部细化节点,这个也是我们平时比较常用的,针对面部做一些优化,减少瑕疵。

第四步:模型放大后再进行二次采样,这个符合我们平时高清步骤,这样做是为了效果更精细一些,我这里先放大四倍,再缩放成2倍的。

资料软件免费放送

次日同一发放请耐心等待

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

**一、AIGC所有方向的学习路线**

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

<think>嗯,用户想了解如何在ComfyUI中编写线稿效果图的工作流节点。首先,我需要回忆一下ComfyUI的基本结构和节点系统。根据引用[3],ComfyUI的上手门槛较高,需要对Stable Diffusion原理有一定了解。所以,我需要先解释清楚节点工作流的基本概念。 接下来,用户需要具体的步骤,可能包括安装必要的插件和模型。引用[4]提到了一些核心节点和检查点,比如ComfyUI-Inference-Core-Nodes和majicMIX realistic/v7模型。这些应该是构建工作流的关键组件。可能需要指导用户安装这些插件和模型,并确保它们正确加载。 然后,线稿效果图通常涉及ControlNet的应用,用于处理线稿作为条件输入。用户可能不知道如何在ComfyUI中配置ControlNet节点,需要详细说明如何连接线稿图像到ControlNet,并设置预处理器和模型。 另外,引用[5]提到了实战案例,可能包含具体的工作流示例。或许可以建议用户参考这些案例,或者分步构建节点流程,包括加载模型、输入线稿、设置生成参数等步骤。 还需要注意可能的问题,比如节点连接错误或模型未正确加载,这时候需要指导用户检查插件安装和路径设置。引用[3]提到手动安装可能需要注意目录结构,这也是需要注意的地方。 最后,生成相关问题,比如优化生成效果或调整风格,可以引导用户进一步探索Lora模型或参数调整,如引用[4]中的Miao girl costume/v1.0,可能用于特定风格的调整。 总之,回答需要结构清晰,分步骤讲解,引用相关资源,并预见到用户可能遇到的困难,提供解决方案。同时,确保使用正确的中文术语和LaTeX格式,但用户这里的问题可能不需要数学公式,所以可能不需要太多LaTeX,不过如果有参数设置部分可能需要用行内公式,比如调整权重时的数值范围。</think>### ComfyUI线稿效果图工作流节点编写方法 在ComfyUI中实现线稿效果图的核心是**控制生成条件**和**节点逻辑编排**,以下是具体步骤: --- #### 一、基础环境准备 1. **安装ControlNet插件** - 通过Manager安装`ComfyUI-ControlNet`,确保包含`lineart`预处理器[^4] - 验证安装:在节点库中搜索`ControlNetLoader`和`ControlNetApply`节点 2. **准备模型资源** - 检查点模型:推荐使用`majicMIX realistic/v7`实现真实感渲染 - LoRA模型:添加`Miao girl costume/v1.0`可增强服饰细节 - 线稿预处理器:下载`control_v11p_sd15_lineart.pth`模型文件 --- #### 二、核心节点配置流程 ```python # 伪代码结构展示 [加载检查点] -> [CLIP文本编码] ↘ [上传线稿图] -> [ControlNet预处理] -> [ControlNetApply] ↗ [空潜变量生成] -> [K采样器] -> [VAE解码] -> [输出图像] ``` 1. **控制流搭建** - 使用`ControlNetLoader`加载线稿模型: ```python controlnet = ControlNetLoader(control_net_name="control_v11p_sd15_lineart.pth") ``` - 配置预处理参数: $$ \text{预处理强度}=1.0,\quad \text{开始控制步长}=0.0,\quad \text{结束控制步长}=1.0 $$ 2. **采样器参数设置** - 在`KSampler`节点中配置: ```python steps=20, cfg_scale=7.5, sampler_name="dpmpp_2m", scheduler="normal" ``` --- #### 三、高级优化技巧 1. **双ControlNet叠加** - 并行添加`lineart`和`softedge`控制网络,提升轮廓保持能力[^5] - 使用`cg-use-everywhere`节点实现多条件融合 2. **分层渲染策略** ```mermaid graph LR A[粗粒度生成] --> B[局部重绘] --> C[超分辨率放大] ``` 通过`Image Scale to Side`节点实现4倍分辨率提升[^1] --- #### 四、常见问题排查 1. **线稿控制失效** - 检查预处理器是否匹配模型类型 - 调整`ControlNet权重`参数(推荐0.7-1.2范围) 2. **图像畸变** - 在`VAE解码`前添加`Latent Upscale`节点 - 启用`HighRes.fix`插件进行分阶段渲染 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值