无偏估计中贝塞尔系数的由来

对于采样自 X X X的独立同分布样本 x i : i ∈ [ 1 , n ] x_i: i\in[1,n] xi:i[1,n],用样本方差 s 2 s^2 s2去估计 X X X的方差 σ 2 \sigma^2 σ2,为什么要除以 n − 1 n-1 n1而不是 n n n?

  1. 证明用 n n n除得到的估计 σ ^ 2 = σ 2 − E [ ( X ˉ − μ ) 2 ] \hat\sigma^2=\sigma^2-E[(\bar X-\mu)^2] σ^2=σ2E[(Xˉμ)2],和无偏估计相比偏小。
    直观解释:因为真实分布的方差计算了所有小概率的样本,样本范围更“广“;而采样的时候对于某些小概率样本点没有采到,所以采得的样本分布更”集中“,所以方差也更”小“。
    https://blog.csdn.net/Hearthougan/article/details/77859173
    https://www.zhihu.com/question/20099757/answer/26586088
  2. 证明 E [ ( X ˉ − μ ) 2 ] = v a r ( X ˉ ) = v a r ( ∑ X i n ) = 1 n 2 ∑ v a r ( X i ) = 1 n σ 2 E[(\bar X-\mu)^2]=var(\bar X)=var(\dfrac{\sum X_i}{n})=\dfrac{1}{n^2}\sum var(X_i)=\dfrac{1}{n}\sigma^2 E[(Xˉμ)2]=var(Xˉ)=var(nXi)=n21var(Xi)=n1σ2
    https://math.stackexchange.com/questions/1363505/prove-that-e-overlinex-mu2-frac1n-sigma2
  3. 对于第1步得到的最初估计 σ ^ 2 \hat\sigma^2 σ^2,乘上一个放缩因子 n n − 1 \dfrac{n}{n-1} n1n,得到无偏估计。

然后去看花书5.4节就能看明白了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值