此篇博客用于记录博弈论与拍卖理论相关知识
写在前面的话:
读了一些关于在交易问题上的博弈和拍卖论文与方法,交易中,买卖双方的博弈侧重于个体的效用,而在拍卖中更侧重的是社会福利。从博弈角度来看,一般需要证明Nash均衡和Stackelberg均衡,从拍卖角度来看,则需要证明个体理性(IR)、激励相容(IC)、弱预算平衡等。
TII上Jiawen Kang的这篇文章非常经典
Enabling Localized Peer-to-Peer Electricity Trading Among Plug-in Hybrid Electric Vehicles Using Consortium Blockchains
方法采用的Double Auction。目标函数为最大化社会福利函数,联立两个式子,用KKT条件求解,然后求出双方的最优买家和卖价,为了能让双方想这个预期价格靠近,通过最大化双方的利润函数来设置竞价函数,最后通过迭代求解,得到最优值。
2022.7.14更
读论文时,突然想到很多论文用不同的机制,同时买家和卖家要满足个体理性和激励相容,但是作为多买家单卖家而言,为什么很多论文并没有采用用英式拍卖(第一价格拍卖)?经过查找相关资料和思考。
首先英式拍卖不满足个体理性,英式拍卖的缺点是:既然获胜的竞买人的出价只需比前一个最高价高一点,那么每个竞买人都不愿马上按照其预估价出价。另外,竞买人要冒一定的风险,他可能会被令人兴奋的竞价过程吸引,出价超出了预估价,这种心理现象称为“赢者诅咒(Winner’s Curse)”。虽然英式拍卖是真实的(也就是拍卖人无法修改价格),但是对于买方而言,买方最后的出价可能会大于预期出价,结果可能导致收益为负。
那么维克里拍卖(第二价格拍卖) 为什么也应用不广泛呢?
因为Vickrey拍卖不是可信的,假设线上有一拍卖行有一件拍卖品,A认为它值100块,结果出价100块(因为即使拍卖成功,也只需要支付第二高价格的钱),B出价50,拍卖结束后,结果出来了,拍卖人告诉A第二高价格为99元,A一看99元,当场付钱了,因为他认为赚了一块,那么B呢?B知道有人出价100元,也就不管了,那么拍卖人造的假也就没人揭发了。
所以需要论文中的拍卖机制既要保证可信,也要保证个体理性和激励相容。