Ollama

#新星杯·14天创作挑战营·第10期#

Ollama

快速上手大型语言模型。

macOS

下载

Windows

下载

Linux

curl -fsSL https://ollama.com/install.sh | sh

手动安装说明

Docker

官方的 Ollama Docker 镜像 ollama/ollama 已在 Docker Hub 上提供。

社区

快速入门

要运行并与 Llama 3.2 对话:

ollama run llama3.2

模型库

Ollama 支持 ollama.com/library 上可用的模型列表。

以下是可以下载的一些示例模型:

模型名称参数量大小下载命令
Gemma 31B815MBollama run gemma3:1b
Gemma 34B3.3GBollama run gemma3
Gemma 312B8.1GBollama run gemma3:12b
Gemma 327B17GBollama run gemma3:27b
QwQ32B20GBollama run qwq
DeepSeek-R17B4.7GBollama run deepseek-r1
DeepSeek-R1671B404GBollama run deepseek-r1:671b
Llama 3.370B43GBollama run llama3.3
Llama 3.23B2.0GBollama run llama3.2
Llama 3.21B1.3GBollama run llama3.2:1b
Llama 3.2 Vision11B7.9GBollama run llama3.2-vision
Llama 3.2 Vision90B55GBollama run llama3.2-vision:90b
Llama 3.18B4.7GBollama run llama3.1
Llama 3.1405B231GBollama run llama3.1:405b
Phi 414B9.1GBollama run phi4
Phi 4 Mini3.8B2.5GBollama run phi4-mini
Mistral7B4.1GBollama run mistral
Moondream 21.4B829MBollama run moondream
Neural Chat7B4.1GBollama run neural-chat
Starling7B4.1GBollama run starling-lm
Code Llama7B3.8GBollama run codellama
Llama 2 Uncensored7B3.8GBollama run llama2-uncensored
LLaVA7B4.5GBollama run llava
Granite-3.28B4.9GBollama run granite3.2

[!NOTE] 运行 7B 模型至少需要 8 GB 内存,运行 13B 模型需要 16 GB 内存,运行 33B 模型需要 32 GB 内存。

定制模型

从 GGUF 导入

Ollama 支持从 Modelfile 中导入 GGUF 模型:

  1. 创建一个名为 Modelfile 的文件,使用 FROM 指令并提供要导入的模型的本地文件路径。

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. 在 Ollama 中创建模型

    ollama create example -f Modelfile
    
  3. 运行模型

    ollama run example
    

从 Safetensors 导入

请参考指南了解更多关于导入模型的信息。

定制提示

来自 Ollama 库的模型可以通过提示进行定制。例如,定制 llama3.2 模型:

ollama pull llama3.2

创建一个 Modelfile

FROM llama3.2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

接下来,创建并运行模型:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

了解更多关于使用 Modelfile 的信息,请查阅Modelfile 文档。

命令行界面参考

创建模型

使用 ollama create 命令可以从 Modelfile 创建一个模型。

ollama create mymodel -f ./Modelfile

提取模型

ollama pull llama3.2

这条命令同样可以用来更新本地模型。只会拉取差异部分。

删除模型

ollama rm llama3.2

复制模型

ollama cp llama3.2 my-model

多行输入

对于多行输入,您可以使用 """ 将文本包裹起来:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

多模态模型

ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"

输出:图像展现了一个黄色的笑脸,这很可能是图片的中心焦点。

Pass the prompt as an argument

ollama run llama3.2 "Summarize this file: $(cat README.md)"

输出:Ollama 是一个轻量级、可扩展的框架,用于在本地计算机上构建和运行语言模型。它提供了创建、运行和管理模型的简单 API,以及一系列预构建模型的库,这些模型可以轻松地应用于各种场景。

显示模型信息

ollama show llama3.2

在您的计算机上列出模型

ollama list

列出当前已加载的模型

ollama ps

停止当前正在运行的模式

ollama stop llama3.2

开始 Ollama

使用 ollama serve 命令,可以在不运行桌面应用程序的情况下启动 ollama。

构建指南

请参阅开发者指南

运行本地构建

接下来,启动服务器:

./ollama serve

最后,在另一个独立的壳中,运行一个模型:

./ollama run llama3.2

REST API

Ollama 提供了一套 REST API,用于运行和管理模型。

生成响应

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt":"Why is the sky blue?"
}'

与模型对话

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

查看API 文档了解所有端点。

社区集成

Web & 桌面

云服务

终端

Apple Vision Pro

  • SwiftChat(支持Apple Vision Pro的跨平台AI聊天应用,通过“为iPad设计”实现)
  • Enchanted

数据库

  • pgai - 将PostgreSQL作为向量数据库(使用pgvector创建和搜索来自Ollama模型的嵌入)
  • MindsDB(将Ollama模型连接到近200个数据平台和应用程序)
  • chromem-go 以及示例
  • Kangaroo(面向流行数据库的AI智能SQL客户端和管理工具)

包管理器

移动端

  • SwiftChat(具有原生 UI 的闪电般快速的跨平台 AI 聊天应用,适用于 Android、iOS 和 iPad)
  • Enchanted
  • Maid
  • Ollama App(现代且易于使用的多平台 Ollama 客户端)
  • ConfiChat(轻量级、独立、多平台且注重隐私的 LLM 聊天界面,可选加密)
  • Ollama Android Chat(无需 Termux,在 Android 设备上点击一下即可启动 Ollama 服务)
  • Reins(轻松调整参数,按聊天自定义系统提示,并支持推理模型,以增强您的 AI 实验效果。)

扩展和插件

支持的后端

  • llama.cpp 由Georgi Gerganov创立的项目。

可观测性

  • Opik 是一个开源平台,用于调试、评估和监控您的LLM应用程序、RAG系统和代理工作流,具有全面的跟踪、自动评估和生产就绪的仪表板。Opik支持对Ollama的本地集成。
  • Lunary 是领先的开源LLM可观测性平台。它提供了各种企业级功能,如实时分析、提示模板管理、PII遮掩和全面的代理跟踪。
  • OpenLIT 是一个OpenTelemetry原生工具,用于使用跟踪和指标监控Ollama应用程序和GPU。
  • HoneyHive 是一个用于AI代理评估和评估的平台。使用HoneyHive评估代理性能、调查失败并在生产中监控质量。
  • Langfuse 是一个开源LLM可观测性平台,使团队能够协作监控、评估和调试AI应用程序。
  • MLflow跟踪 是一个开源LLM可观测性工具,具有方便的API来记录和可视化跟踪,使调试和评估生成AI应用程序变得简单。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

thesky123456

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值