Ollama
快速上手大型语言模型。
macOS
Windows
Linux
curl -fsSL https://ollama.com/install.sh | sh
手动安装说明
Docker
官方的 Ollama Docker 镜像 ollama/ollama
已在 Docker Hub 上提供。
库
社区
快速入门
要运行并与 Llama 3.2 对话:
ollama run llama3.2
模型库
Ollama 支持 ollama.com/library 上可用的模型列表。
以下是可以下载的一些示例模型:
模型名称 | 参数量 | 大小 | 下载命令 |
---|---|---|---|
Gemma 3 | 1B | 815MB | ollama run gemma3:1b |
Gemma 3 | 4B | 3.3GB | ollama run gemma3 |
Gemma 3 | 12B | 8.1GB | ollama run gemma3:12b |
Gemma 3 | 27B | 17GB | ollama run gemma3:27b |
QwQ | 32B | 20GB | ollama run qwq |
DeepSeek-R1 | 7B | 4.7GB | ollama run deepseek-r1 |
DeepSeek-R1 | 671B | 404GB | ollama run deepseek-r1:671b |
Llama 3.3 | 70B | 43GB | ollama run llama3.3 |
Llama 3.2 | 3B | 2.0GB | ollama run llama3.2 |
Llama 3.2 | 1B | 1.3GB | ollama run llama3.2:1b |
Llama 3.2 Vision | 11B | 7.9GB | ollama run llama3.2-vision |
Llama 3.2 Vision | 90B | 55GB | ollama run llama3.2-vision:90b |
Llama 3.1 | 8B | 4.7GB | ollama run llama3.1 |
Llama 3.1 | 405B | 231GB | ollama run llama3.1:405b |
Phi 4 | 14B | 9.1GB | ollama run phi4 |
Phi 4 Mini | 3.8B | 2.5GB | ollama run phi4-mini |
Mistral | 7B | 4.1GB | ollama run mistral |
Moondream 2 | 1.4B | 829MB | ollama run moondream |
Neural Chat | 7B | 4.1GB | ollama run neural-chat |
Starling | 7B | 4.1GB | ollama run starling-lm |
Code Llama | 7B | 3.8GB | ollama run codellama |
Llama 2 Uncensored | 7B | 3.8GB | ollama run llama2-uncensored |
LLaVA | 7B | 4.5GB | ollama run llava |
Granite-3.2 | 8B | 4.9GB | ollama run granite3.2 |
[!NOTE] 运行 7B 模型至少需要 8 GB 内存,运行 13B 模型需要 16 GB 内存,运行 33B 模型需要 32 GB 内存。
定制模型
从 GGUF 导入
Ollama 支持从 Modelfile 中导入 GGUF 模型:
-
创建一个名为
Modelfile
的文件,使用FROM
指令并提供要导入的模型的本地文件路径。FROM ./vicuna-33b.Q4_0.gguf
-
在 Ollama 中创建模型
ollama create example -f Modelfile
-
运行模型
ollama run example
从 Safetensors 导入
请参考指南了解更多关于导入模型的信息。
定制提示
来自 Ollama 库的模型可以通过提示进行定制。例如,定制 llama3.2
模型:
ollama pull llama3.2
创建一个 Modelfile
:
FROM llama3.2
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""
接下来,创建并运行模型:
ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.
了解更多关于使用 Modelfile 的信息,请查阅Modelfile 文档。
命令行界面参考
创建模型
使用 ollama create
命令可以从 Modelfile 创建一个模型。
ollama create mymodel -f ./Modelfile
提取模型
ollama pull llama3.2
这条命令同样可以用来更新本地模型。只会拉取差异部分。
删除模型
ollama rm llama3.2
复制模型
ollama cp llama3.2 my-model
多行输入
对于多行输入,您可以使用 """
将文本包裹起来:
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.
多模态模型
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
输出:图像展现了一个黄色的笑脸,这很可能是图片的中心焦点。
Pass the prompt as an argument
ollama run llama3.2 "Summarize this file: $(cat README.md)"
输出:Ollama 是一个轻量级、可扩展的框架,用于在本地计算机上构建和运行语言模型。它提供了创建、运行和管理模型的简单 API,以及一系列预构建模型的库,这些模型可以轻松地应用于各种场景。
显示模型信息
ollama show llama3.2
在您的计算机上列出模型
ollama list
列出当前已加载的模型
ollama ps
停止当前正在运行的模式
ollama stop llama3.2
开始 Ollama
使用 ollama serve
命令,可以在不运行桌面应用程序的情况下启动 ollama。
构建指南
请参阅开发者指南
运行本地构建
接下来,启动服务器:
./ollama serve
最后,在另一个独立的壳中,运行一个模型:
./ollama run llama3.2
REST API
Ollama 提供了一套 REST API,用于运行和管理模型。
生成响应
curl http://localhost:11434/api/generate -d '{
"model": "llama3.2",
"prompt":"Why is the sky blue?"
}'
与模型对话
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
{ "role": "user", "content": "why is the sky blue?" }
]
}'
查看API 文档了解所有端点。
社区集成
Web & 桌面
- Open WebUI
- SwiftChat (macOS with ReactNative)
- Enchanted (macOS native)
- Hollama
- Lollms-Webui
- LibreChat
- Bionic GPT
- HTML UI
- Saddle
- TagSpaces(一个基于文件的应用程序平台,利用 Ollama 生成标签和描述)
- Chatbot UI
- Chatbot UI v2
- Typescript UI
- Ollama 模型的简约 React UI
- Ollamac
- big-AGI
- Cheshire Cat 助手框架
- Amica
- chatd
- Ollama-SwiftUI
- Dify.AI
- MindMac
- NextJS Web 界面
- Msty
- Chatbox
- WinForm Ollama Copilot
- NextChat以及入门文档
- Alpaca WebUI
- OllamaGUI
- OpenAOE
- Odin Runes
- LLM-X(渐进式 Web 应用)
- AnythingLLM (Docker + MacOs/Windows/Linux native app)
- Ollama 基础聊天:使用 HyperDiv 反应式 UI
- Ollama-chats RPG
- IntelliBar(macOS 上的 AI 助手)
- QA-Pilot(一种交互式聊天工具,可以借助 Ollama 模型快速理解并导航 GitHub 代码仓库)
- ChatOllama(基于 Ollama 和知识库的开源聊天机器人)
- CRAG Ollama Chat(简单的 Web 搜索与纠正 RAG)
- RAGFlow(基于深度文档理解的开放源代码检索增强生成引擎)
- StreamDeploy(LLM 应用脚手架)
- chat(团队的聊天网页应用)
- Lobe Chat以及集成文档
- Ollama RAG 聊天机器人(使用 Ollama 和 RAG 的本地聊天,支持多个 PDF)
- BrainSoup(支持 RAG 和多代理自动化的灵活原生客户端)
- macai(macOS 客户端,支持 Ollama、ChatGPT 和其他兼容的 API 后端)
- RWKV-Runner(RWKV 离线 LLM 部署工具,也可用作 ChatGPT 和 Ollama 的客户端)
- Ollama 网格搜索(评估和比较模型的应用程序)
- Olpaka(Ollama 的用户友好型 Flutter Web 应用)
- Casibase(一个结合最新 RAG、SSO、Ollama 支持 和多个大型语言模型的开放源代码 AI 知识库和对话系统。)
- OllamaSpring(macOS 的 Ollama 客户端)
- LLocal.in(易于使用的 Electron 桌面客户端)
- Shinkai Desktop(两键安装本地 AI,使用 Ollama + 文件 + RAG)
- AiLama(一个 Discord 用户应用,允许你在 discord 中的任何地方与 Ollama 互动)
- Ollama 与 Google Mesop(Mesop 聊天客户端的 Ollama 实现)
- R2R(开放源代码 RAG 引擎)
- Ollama-Kis(用于驾驶员教育的简单易用 GUI,附带样本自定义 LLM)
- OpenGPA(离线优先的企业级代理应用程序)
- Painting Droid(带有 AI 集成的绘画应用)
- Kerlig AI(macOS 的 AI 写作助手)
- AI Studio
- Sidellama(基于浏览器的 LLM 客户端)
- LLMStack(无代码多代理框架,用于构建 LLM 代理和工作流)
- BoltAI for Mac(Mac 的 AI 聊天客户端)
- Harbor(带有 Ollama 作为默认后端的容器化 LLM 工具包)
- PyGPT(Linux、Windows 和 Mac 的 AI 桌面助手)
- Alpaca(Linux 和 macOS 的 Ollama 客户端应用程序,使用 GTK4 和 Adwaita)
- AutoGPT(AutoGPT 的 Ollama 集成)
- Go-CREW(Golang 的强大离线 RAG)
- PartCAD(使用 OpenSCAD 和 CadQuery 生成 CAD 模型)
- Ollama4j Web UI - 使用 Vaadin、Spring Boot 和 Ollama4j 构建的 Ollama Java-based Web UI
- PyOllaMx - 能够与 Ollama 和 Apple MLX 模型聊天的 macOS 应用程序。
- Cline - 前称 Claude Dev,是一个 VSCode 扩展,用于多文件/整个仓库编码
- Cherry Studio(带有 Ollama 支持的桌面客户端)
- ConfiChat(轻量级、独立、跨平台、注重隐私的 LLM 聊天界面,可选加密)
- Archyve(支持 RAG 的文档库)
- crewAI 与 Mesop(Mesop Web 界面,用于运行带有 Ollama 的 crewAI)
- 基于 Tkinter 的客户端(Python tkinter-based 的 Ollama 客户端)
- LLMChat(注重隐私、100% 本地、直观的全功能聊天界面)
- 本地多模态 AI 聊天(支持多种功能,包括 PDF RAG、语音聊天、基于图像的交互和 OpenAI 集成的 Ollama-based LLM 聊天)
- ARGO(在 Mac/Windows/Linux 上下载并运行 Ollama 和 Huggingface 模型的本地 RAG)
- OrionChat - OrionChat 是一个用于与不同 AI 提供商聊天的 Web 界面
- G1(使用提示策略通过类似 o1 的推理链来改进 LLM 推理的原型)
- Web 管理(Web 管理页面)
- Promptery(Ollama 的桌面客户端)
- Ollama 应用(现代且易于使用的多平台 Ollama 客户端)
- chat-ollama(Ollama 的 React Native 客户端)
- SpaceLlama(Firefox 和 Chrome 扩展,使用 ollama 在侧边栏快速总结网页)
- YouLama(Web 应用程序,可快速总结任何 YouTube 视频,支持 Invidious)
- DualMind(实验性应用,允许两个模型在终端或 Web 界面中相互对话)
- ollamarama-matrix(Ollama 聊天机器人,适用于 Matrix 聊天协议)
- ollama-chat-app(基于 Flutter 的聊天应用)
- Perfect Memory AI(个性化生产力 AI,根据你在屏幕上看到的、听到的和会议中说的内容进行辅助)
- Hexabot(一个对话式 AI 构建器)
- Reddit Rate(使用加权求和搜索和评分 Reddit 主题)
- OpenTalkGpt(Chrome 扩展,用于管理支持 Ollama 的开源模型,创建自定义模型,并通过用户友好的界面与模型聊天)
- VT(一个简约的多模态 AI 聊天应用,支持动态对话路由。支持通过 Ollama 的本地模型)
- Nosia(基于 Ollama 的易于安装和使用的 RAG 平台)
- Witsy(适用于 Mac/Windows/Linux 的 AI 桌面应用程序)
- Abbey(一款功能可配置的人工智能接口服务器,支持笔记本、文档存储和YouTube功能)
- Minima(一款支持本地或完全本地工作流的 Retrieval Augmented Generator)
- aidful-ollama-model-delete(简化模型清理的用户界面)
- Perplexica(一款基于人工智能的搜索引擎,以及Perplexity AI的开源替代品)
- Ollama Chat WebUI for Docker(支持本地Docker部署,轻量级的Ollama网页用户界面)
- AI Toolkit for Visual Studio Code(微软官方的VSCode扩展,支持与Ollama的聊天、测试、评估模型,并在AI应用程序中使用它们)
- MinimalNextOllamaChat(用于聊天和模型控制的极简Web用户界面)
- Chipper(面向爱好者的AI接口,支持Ollama、Haystack RAG和Python)
- ChibiChat(基于Kotlin的Android应用,用于与Ollama和Koboldcpp API端点聊天)
- LocalLLM(一个极简的Web应用程序,用于在GUI上运行Ollama模型)
- Ollamazing(用于运行Ollama模型的Web扩展)
- OpenDeepResearcher-via-searxng(一个支持Ollama的深度研究等效端点,可在本地运行)
- AntSK(开箱即用且可适应的RAG聊天机器人)
- MaxKB(即插即用且灵活的RAG聊天机器人)
- yla(用于与自定义模型自由交互的Web界面)
- LangBot(基于LLM的即时通讯机器人平台,具备 Agents、RAG 特性,支持多平台)
- 1Panel(基于Web的Linux服务器管理工具)
- AstrBot(面向多平台的用户友好型LLM聊天机器人,具备WebUI,支持RAG、LLM Agents和插件集成)
- Reins(轻松调整参数,按聊天自定义系统提示,并通过推理模型支持增强您的AI实验)
- Ellama(用于与Ollama实例聊天的友好原生应用)
- screenpipe(构建基于屏幕历史记录的智能代理)
- Ollamb(简单而功能丰富的跨平台应用程序,使用Flutter构建,专为Ollama设计。尝试网页演示。)
- Writeopia(支持Ollama集成的文本编辑器)
- AppFlowy(支持Ollama的AI协作工作空间,跨平台且可自托管)
云服务
终端
- oterm
- Ellama Emacs客户端
- Emacs客户端
- neollama(用于在Neovim内与模型交互的UI客户端)
- gen.nvim
- ollama.nvim
- ollero.nvim
- ollama-chat.nvim
- ogpt.nvim
- gptel Emacs客户端
- Oatmeal
- cmdh
- ooo
- shell-pilot(在Linux或macOS上通过纯shell脚本与模型交互)
- tenere
- llm-ollama 用于Datasette的LLM CLI。
- typechat-cli
- ShellOracle
- tlm
- podman-ollama
- gollama
- ParLlama
- Ollama eBook Summary
- Ollama混合专家模型(MOE)在50行代码中
- vim-intelligence-bridge("Ollama"与Vim编辑器的简单交互)
- x-cmd ollama
- bb7
- SwollamaCLI 与Swollama Swift软件包捆绑。 演示
- aichat 拥有Shell Assistant、Chat-REPL、RAG、AI工具和代理的全能LLM CLI工具,支持OpenAI、Claude、Gemini、Ollama、Groq等。
- PowershAI PowerShell模块,将AI带到Windows终端,包括对Ollama的支持
- DeepShell 您的自托管AI助手。交互式Shell,文件和文件夹分析。
- orbiton 无需配置的文本编辑器和IDE,支持与Ollama的标签完成。
- orca-cli Ollama注册表CLI应用程序 - 在终端中浏览、拉取和下载Ollama注册表中的模型。
- GGUF-to-Ollama - 将GGUF导入Ollama变得简单(多平台)
Apple Vision Pro
数据库
- pgai - 将PostgreSQL作为向量数据库(使用pgvector创建和搜索来自Ollama模型的嵌入)
- MindsDB(将Ollama模型连接到近200个数据平台和应用程序)
- chromem-go 以及示例
- Kangaroo(面向流行数据库的AI智能SQL客户端和管理工具)
包管理器
库
- LangChain 和 LangChain.js 以及 示例
- Firebase Genkit
- crewAI
- Yacana(用户友好的多代理框架,用于头脑风暴和执行预设流程,并集成了内置工具)
- Spring AI 以及 参考 和 示例
- LangChainGo 以及 示例
- LangChain4j 以及 示例
- LangChainRust 以及 示例
- LangChain for .NET 以及 示例
- LLPhant
- LlamaIndex 和 LlamaIndexTS
- LiteLLM
- OllamaFarm for Go
- OllamaSharp for .NET
- Ollama for Ruby
- Ollama-rs for Rust
- Ollama-hpp for C++
- Ollama4j for Java
- ModelFusion Typescript Library
- OllamaKit for Swift
- Ollama for Dart
- Ollama for Laravel
- LangChainDart
- Semantic Kernel - Python
- Haystack
- Elixir LangChain
- Ollama for R - rollama
- Ollama for R - ollama-r
- Ollama-ex for Elixir
- Ollama Connector for SAP ABAP
- Testcontainers
- Portkey
- PromptingTools.jl 以及 示例
- LlamaScript
- llm-axe(用于构建 LLM 动力应用的 Python 工具包)
- Gollm
- Gollama for Golang
- Ollamaclient for Golang
- Go 中的高级函数抽象
- Ollama PHP
- Agents-Flex for Java 以及 示例
- Parakeet 是一个 GoLang 库,旨在简化使用 Ollama 开发小型生成式 AI 应用程序的过程。
- Haverscript 以及 示例
- Ollama for Swift
- Swollama for Swift 以及 文档
- GoLamify
- Ollama for Haskell
- multi-llm-ts(一个 Typescript/JavaScript 库,允许通过统一 API 访问不同的 LLM)
- LlmTornado(一个 C# 库,提供了主要的开源和商业推理 API 的统一接口)
- Ollama for Zig
- Abso(适用于任何 LLM 提供商的 OpenAI 兼容 TypeScript SDK)
- Nichey 是一个 Python 包,用于为您的研课题生成自定义维基
- Ollama for D
移动端
- SwiftChat(具有原生 UI 的闪电般快速的跨平台 AI 聊天应用,适用于 Android、iOS 和 iPad)
- Enchanted
- Maid
- Ollama App(现代且易于使用的多平台 Ollama 客户端)
- ConfiChat(轻量级、独立、多平台且注重隐私的 LLM 聊天界面,可选加密)
- Ollama Android Chat(无需 Termux,在 Android 设备上点击一下即可启动 Ollama 服务)
- Reins(轻松调整参数,按聊天自定义系统提示,并支持推理模型,以增强您的 AI 实验效果。)
扩展和插件
- Raycast扩展
- Discollama(在Ollama Discord频道中的Discord机器人)
- Continue
- Vibe(使用Ollama转录和分析会议)
- Obsidian Ollama插件
- Logseq Ollama插件
- NotesOllama(Apple Notes的Ollama插件)
- Dagger聊天机器人
- Discord AI机器人
- Ollama Telegram机器人
- Hass Ollama对话
- Rivet插件
- Obsidian BMO聊天机器人插件
- Cliobot(支持Ollama的Telegram机器人)
- Obsidian Copilot插件
- Obsidian本地GPT插件
- Open Interpreter
- Llama编码器(使用Ollama的Copilot替代品)
- Ollama Copilot(允许您像GitHub Copilot一样使用Ollama的代理)
- twinny(使用Ollama的Copilot和Copilot聊天替代品)
- Wingman-AI(使用Ollama和Hugging Face的Copilot代码和聊天替代品)
- 页面助手(Chrome扩展程序)
- Plasmoid Ollama控制(KDE Plasma扩展,允许您快速管理/控制Ollama模型)
- AI Telegram机器人(使用Ollama后端的Telegram机器人)
- AI ST完成(支持Ollama的Sublime Text 4 AI助手插件)
- Discord-Ollama聊天机器人(通用TypeScript Discord机器人,附有调整文档)
- ChatGPTBox:一站式浏览器扩展附集成教程
- Discord AI聊天/审查机器人 用Python编写的聊天/审查机器人。使用Ollama创建个性。
- 无头Ollama(自动在任何操作系统上安装Ollama客户端和模型的脚本,适用于依赖于Ollama服务器的应用程序)
- Terraform AWS Ollama & Open WebUI(一个Terraform模块,用于在AWS上部署可用的Ollama服务,以及其前端Open WebUI服务。)
- node-red-contrib-ollama
- 本地AI助手(Chrome和Firefox扩展,启用与活动选项卡和可定制API端点的交互。包括用户提示的安全存储。)
- vnc-lm(通过Ollama和LiteLLM进行消息传递的Discord机器人。无缝在本地和旗舰模型之间切换。)
- LSP-AI(用于AI功能的开源语言服务器)
- QodeAssist(Qt Creator的AI编码助手插件)
- Obsidian测验生成器插件
- AI摘要助手插件
- TextCraft(使用Ollama的Copilot in Word替代品)
- Alfred Ollama(Alfred工作流)
- TextLLaMA 一个Chrome扩展,帮助您撰写电子邮件、纠正语法并翻译成任何语言
- Simple-Discord-AI
- LLM Telegram机器人(主要用于角色扮演的telegram机器人,Oobabooga-like按钮,A1111 API集成等)
- mcp-llm(MCP服务器,允许LLM调用其他LLM)
支持的后端
- llama.cpp 由Georgi Gerganov创立的项目。
可观测性
- Opik 是一个开源平台,用于调试、评估和监控您的LLM应用程序、RAG系统和代理工作流,具有全面的跟踪、自动评估和生产就绪的仪表板。Opik支持对Ollama的本地集成。
- Lunary 是领先的开源LLM可观测性平台。它提供了各种企业级功能,如实时分析、提示模板管理、PII遮掩和全面的代理跟踪。
- OpenLIT 是一个OpenTelemetry原生工具,用于使用跟踪和指标监控Ollama应用程序和GPU。
- HoneyHive 是一个用于AI代理评估和评估的平台。使用HoneyHive评估代理性能、调查失败并在生产中监控质量。
- Langfuse 是一个开源LLM可观测性平台,使团队能够协作监控、评估和调试AI应用程序。
- MLflow跟踪 是一个开源LLM可观测性工具,具有方便的API来记录和可视化跟踪,使调试和评估生成AI应用程序变得简单。