ResNet网络框架

一、ResNet

Deep Residual Learning for Image Recognition(深度残差学习在图像识别中的应用)

二、详解

1、网络结构
在这里插入图片描述
在这里插入图片描述
在计算机视觉里,特征的“等级”随增网络深度的加深而变高,研究表明,网络的深度是实现好的效果的重要因素。然而梯度弥散/爆炸成为训练深层次的网络的障碍,导致无法收敛。

有一些方法可以弥补,如标准化初始化中间各层归一化,使得可以收敛的网络的深度提升为原来的十倍。然而,虽然收敛了,但网络却开始退化了,即增加网络层数却导致更大的误差。

2、Shortcut connection(快捷连接)&&残差块
在这里插入图片描述

  • 它有二层,如下表达式,其中σ代表非线性函数ReLU:
    在这里插入图片描述
  • 然后通过一个shortcut,和第2个ReLU,获得输出y:
    在这里插入图片描述
  • 当需要对输入和输出维数进行变化时(如改变通道数目),可以在shortcut时对x做一个线性变换Ws,如下式,然而实验证明x已经足够了,不需要再搞个维度变换,除非需求是某个特定维度的输出,如文章开头的resnet网络结构图中的虚线,是将通道数翻倍。
    在这里插入图片描述
    注: 实验证明,这个残差块往往需要两层以上,单单一层的残差块(y=W1x+x)并不能起到提升作用。

但是,ResNet模块并不是这么单一,文章中就提出了两种方式:
在这里插入图片描述
这两种结构分别针对ResNet34(左图)和ResNet50/101/152(右图),一般称整个结构为一个”building block“。其中右图又称为”bottleneck design”,目的一目了然,就是为了降低参数的数目,第一个1x1的卷积把256维channel降到64维,然后在最后通过1x1卷积恢复,整体上用的参数数目:1x1x256x64 + 3x3x64x64 + 1x1x64x256 = 69632,而不使用bottleneck的话就是两个3x3x256的卷积,参数数目: 3x3x256x256x2 = 1179648,差了16.94倍。
对于常规ResNet,可以用于34层或者更少的网络中,对于Bottleneck Design的ResNet通常用于更深的如101这样的网络中,目的是减少计算和参数量(实用目的)

3、基于ResNet101的Faster RCNN
在这里插入图片描述
整个Faster RCNN的架构,其中蓝色的部分为ResNet101,可以发现conv4_x的最后的输出为RPN和RoI Pooling共享的部分,而conv5_x(共9层网络)都作用于RoI Pooling之后的一堆特征图(14 x 14 x 1024),特征图的大小维度也刚好符合原本的ResNet101中conv5_x的输入;
最后大家一定要记得最后要接一个average pooling,得到2048维特征,分别用于分类和框回归。

ResNet34是一种深度残差网络(Residual Networks,简称ResNet)的架构,是ResNet系列中的一种。该架构在2015年由微软研究院的Kaiming He等人提出,并在ImageNet和COCO竞赛中取得了突破性的成绩。ResNet34的主要贡献在于解决了深度神经网络训练过程中的梯度消失和梯度爆炸问题,允许网络架构变得更加深邃,而性能不会下降。 ResNet34网络的基本思想是引入了“残差学习”的概念,即网络中的某些层可以学习输入数据的残差映射,而不是直接拟合所需的功能映射。这通过在网络中引入“捷径”(或称为跳跃连接)来实现,这些捷径允许信号直接跳过一层或几层,直接传递到更深的层。这样的结构有助于训练过程中梯度的稳定流动,允许训练更深的网络ResNet34包含34个训练层,由多个残差块(residual blocks)组成,每个残差块内部包含两到三个卷积层。这些残差块被组织成多个阶段,每个阶段的卷积层的特征图尺寸保持不变,而通道数则逐阶段增加。每个残差块内部的卷积层使用了批量归一化(Batch Normalization)和ReLU激活函数。最后通过全局平均池化层(Global Average Pooling)和全连接层输出最终的分类结果。 ResNet34在深度学习领域得到了广泛的应用,特别是在图像识别、图像分类等任务中。由于其实现了更深的网络结构,ResNet34相较于以前的网络架构如AlexNet、VGG等,在保持计算复杂度相近的情况下,可以实现更高的准确度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值