目标检测之OHEM

一、目标检测之OHEM

Training Region-based Object Detectors with Online Hard Example Mining

二、OHEM算法

在这里插入图片描述
步骤:

  1. 将Fast R-CNN分成两个部分:ConvNet和RoINet.;ConvNet为共享的底层卷积层,生成feature map;RoINet为RoI Pooling后的层,包括全连接层;
  2. 对于每张输入图像,经前向传播,用ConvNet获得feature maps(这里为RoI Pooling层的输入);
  3. 将事先计算好的proposals,经RoI Pooling层投影到feature maps上,获取固定的特征输出作为全连接层的输入; 需要注意的是,论文说,为了减少显存以及后向传播的时间,这里的RoINet是有两个的,它们共享权重,RoINet1是只读(只进行forward),如上图(a);RoINet2进行forward和backward,如上图(b):
    (1)将原图的所有props扔到RoINet1,计算它们的loss(这里有两个loss:cls和reg);
    (2)根据loss从高到低排序,以及利用NMS,来选出前K个props(K由论文里的N和B参数决定) !!!为什么要用NMS? ___显然对于那些高度overlap的props经RoI的投影后,其在feature maps上的位置和大小是差不多一样的,容易导致loss double counting问题;
    (3)将选出的K个props(可以理解成hard examples)扔到RoINet2,这时的RoINet2和Fast RCNN的RoINet一样,计算K个props的loss,并回传梯度/残差给ConvNet,来更新整个网络;

OHME优势:

  • 减少fg和bg的ratio,而且不需要人为设计这个ratio;
  • 加速收敛,减少显存需要这些硬件的条件依赖;
  • 放宽了定义negative example的bg_lo threshold,即从[0.1, 0.5)变化到[0, 0.5)。
  • 取消了正负样本在mini-batch里的ratio(原Fast-RCNN的ratio为1:3—postive:negtive)

结果
在这里插入图片描述

在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值