电控相关公式以及参数(转载整合)

等幅值变换

Clarke变换

正变换(3/2):

i\alpha =ia-ib*cos\frac{\pi }{3}-ic*cos\frac{\pi }{3}=\frac{3}{2}ia

i\beta =ib*sin\frac{\pi }{3}-ic*sin\frac{\pi }{3}=\frac{\sqrt{3}}{2}(ia+2ib)

由于为等幅值变换,ialpha=ia,所以系数为2/3,公式化为:

i\alpha =ia

i\beta =\frac{ia+2ib}{\sqrt{3}}

 Park变换

正变换(2/2):

id=i\alpha *cos\varphi +i\beta *sin\varphi

iq=-i\alpha *sin\varphi +i\beta *cos\varphi

逆变换:

i\alpha =id*cos\varphi -iq*sin\varphi

i\beta =id*sin\varphi +iq*cos\varphi

磁通、磁链、磁动势

1.磁链Ψ
导电线圈或电流回路所链环的磁通量。磁链等于导电线圈匝数N与穿过该线圈各匝的平均磁通量φ的乘积,故又称磁通匝。当只有一匝线圈的时候,磁链跟磁通量是相等的。 当有N匝线圈的时候,因为电压的累加关系。由定义式就有Ψ=NΦ 的关系
Ψ=NΦ

2.磁通Φ
设在磁感应强度为B的匀强磁场中,有一个面积为S且与磁场方向垂直的平面,磁感应强度B与面积S的乘积,叫做穿过这个平面的磁通量,简称磁通(Magnetic Flux)。标量,符号“Φ”。
Φ=BS,适用条件是B与S平面垂直。在磁场与平面不垂直的情况下,设S与B的垂面存在夹角θ时,Φ=B·S·cosθ。

3.磁势F(MMF)
“磁势”也称为磁动势,是某些物质或者现象能够给予磁场应力的一种属性。类似于电学中的电动势或者电压
一、F=Φ·Rm,Φ=B*S(S为与磁场方向垂直的平面的面积),Rm=L/μA(L表示磁路长度,A表示磁路横截面积)。
二、F = N·I,N表示线圈匝数,I表示线圈中的电流大小。
三、F = H·L,(H为磁场强度,与磁密度B和磁路材料等有关) L表示磁路长度。
公式一:作用在磁路上的磁动势 F 等于磁路内的磁通量 Φ 与磁阻Rm的乘积。
公式二:通电线圈产生的磁动势 F 等于线圈的匝数 N 和线圈中所通过的电流 I 的乘积,也叫磁通势,磁动势F的单位是安培(A)。
公式三:F是磁场强度H在磁路L上的积分。
感应电机的磁动势为:N-绕组匝数,单位为次数(turns)
I-绕组中的电流,单位为安培 (A)
Φ-磁通量,单位为韦伯 (Wb)
Rm-磁路的磁阻,单位为安培/韦伯 (A/Wb)
参考:(135条消息) 磁链Ψ、磁通φ、磁势F_未曾悟道的佛的博客-CSDN博客_磁链和磁动势

电机基本公式

电机参数及其相关性:

  • 基础1:电机的基本参数

电机一般会提供的参数如下:

项目参数说明
转子极对数PP极数=极对数 *2
D轴电感Ld电感量随电流变化而变化
Q轴电感Lq电感量随电流变化而变化
定子线圈绕组电阻Rs线间 line-to-line
感应电压常数(Vpeak_ll)/KrpmKe1= (Vpeak_ll)/Krpm线间 line-to-line

说明:不同的厂家提供的参数可能不同;表中利用符号代表具体的数值,符号只是在本文档中表示,不是国际通用表示方法。

  • 基础2:dq旋转坐标系下电机电气模型

其中:

λaf: 转子磁通

ωr :转子角速度

p :微分算子

Rs:定子电阻

Ld,Lq :dq轴电感

vqs,vds :dq轴定子电压

iqs,ids :dq轴定子电流

  • 推导1:由感应电压常数推导反电势常数

感应电压常数由k_e1 (V_(peak_ll)⁄krpm) 表示(line-to-line);反电势常数由k_e2 (V_(peak_ph)⁄rpm)表示; 这里核心就是线电压和相电压是 3 的关系;

  • 推导2:由反电势常数推导磁通

由以下基本公式:

E=Blv

B=ϕs

其中:E为电动势;B是磁感应强度; l 是有效导线长度; v是导线的运动速度; Φ是 磁通量 ;S 是磁通量通过的截面积;

进而得到:

E=ϕslv=ωϕ

ϕ=Eω

因此单位角速度产生的电压即为磁通,这里的E用上文中的反电动势常数中的电压V_(peak_ph)来代替就可以得到:

ϕ=Vpeakph/ω

这样就求出电压和磁通的其中关系了,进而再转化成反电动势常数k_e2,同时把 ω 和rpm的关系代入:

其中PP是电机极对数;

  • 基础3:电机力矩计算公式

  • 推导3:转矩常数Kt和磁通的关系

在Ld=Lq的理想情况下,即Im=Is, 控制角度等于90度,上式力矩公式变成:

Te=32P2λafIs=KtIs

所以转矩常数Kt和磁通的关系就是:

()Kt=32P2λaf−−−−−(12)

注意这里磁通的写法是 λaf ,和上文中的 磁通ϕ是同一物理含义,只是写法不同。

  • 推导4:转矩常数Kt和反电势常数Ke的关系

即由式(9)和式(12) 可以推导出:

由此可见转矩常数Kt和反电势常数Ke之间是有一个固定的比例关系的。

数据来源:理解电机基本参数和它们之间的关系 - 知乎 (zhihu.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值