等幅值变换
Clarke变换
正变换(3/2):
由于为等幅值变换,ialpha=ia,所以系数为2/3,公式化为:
Park变换
正变换(2/2):
逆变换:
磁通、磁链、磁动势
1.磁链Ψ
导电线圈或电流回路所链环的磁通量。磁链等于导电线圈匝数N与穿过该线圈各匝的平均磁通量φ的乘积,故又称磁通匝。当只有一匝线圈的时候,磁链跟磁通量是相等的。 当有N匝线圈的时候,因为电压的累加关系。由定义式就有Ψ=NΦ 的关系
Ψ=NΦ
2.磁通Φ
设在磁感应强度为B的匀强磁场中,有一个面积为S且与磁场方向垂直的平面,磁感应强度B与面积S的乘积,叫做穿过这个平面的磁通量,简称磁通(Magnetic Flux)。标量,符号“Φ”。
Φ=BS,适用条件是B与S平面垂直。在磁场与平面不垂直的情况下,设S与B的垂面存在夹角θ时,Φ=B·S·cosθ。
3.磁势F(MMF)
“磁势”也称为磁动势,是某些物质或者现象能够给予磁场应力的一种属性。类似于电学中的电动势或者电压
一、F=Φ·Rm,Φ=B*S(S为与磁场方向垂直的平面的面积),Rm=L/μA(L表示磁路长度,A表示磁路横截面积)。
二、F = N·I,N表示线圈匝数,I表示线圈中的电流大小。
三、F = H·L,(H为磁场强度,与磁密度B和磁路材料等有关) L表示磁路长度。
公式一:作用在磁路上的磁动势 F 等于磁路内的磁通量 Φ 与磁阻Rm的乘积。
公式二:通电线圈产生的磁动势 F 等于线圈的匝数 N 和线圈中所通过的电流 I 的乘积,也叫磁通势,磁动势F的单位是安培(A)。
公式三:F是磁场强度H在磁路L上的积分。
感应电机的磁动势为:N-绕组匝数,单位为次数(turns)
I-绕组中的电流,单位为安培 (A)
Φ-磁通量,单位为韦伯 (Wb)
Rm-磁路的磁阻,单位为安培/韦伯 (A/Wb)
参考:(135条消息) 磁链Ψ、磁通φ、磁势F_未曾悟道的佛的博客-CSDN博客_磁链和磁动势
电机基本公式
电机参数及其相关性:
- 基础1:电机的基本参数
电机一般会提供的参数如下:
项目 | 参数 | 说明 |
---|---|---|
转子极对数 | PP | 极数=极对数 *2 |
D轴电感 | Ld | 电感量随电流变化而变化 |
Q轴电感 | Lq | 电感量随电流变化而变化 |
定子线圈绕组电阻 | Rs | 线间 line-to-line |
感应电压常数(Vpeak_ll)/Krpm | Ke1= (Vpeak_ll)/Krpm | 线间 line-to-line |
说明:不同的厂家提供的参数可能不同;表中利用符号代表具体的数值,符号只是在本文档中表示,不是国际通用表示方法。
- 基础2:dq旋转坐标系下电机电气模型
其中:
λaf: 转子磁通
ωr :转子角速度
p :微分算子
Rs:定子电阻
Ld,Lq :dq轴电感
vqs,vds :dq轴定子电压
iqs,ids :dq轴定子电流
- 推导1:由感应电压常数推导反电势常数
感应电压常数由k_e1 (V_(peak_ll)⁄krpm) 表示(line-to-line);反电势常数由k_e2 (V_(peak_ph)⁄rpm)表示; 这里核心就是线电压和相电压是 3 的关系;
- 推导2:由反电势常数推导磁通
由以下基本公式:
E=Blv
B=ϕs
其中:E为电动势;B是磁感应强度; l 是有效导线长度; v是导线的运动速度; Φ是 磁通量 ;S 是磁通量通过的截面积;
进而得到:
E=ϕslv=ωϕ
ϕ=Eω
因此单位角速度产生的电压即为磁通,这里的E用上文中的反电动势常数中的电压V_(peak_ph)来代替就可以得到:
ϕ=Vpeakph/ω
这样就求出电压和磁通的其中关系了,进而再转化成反电动势常数k_e2,同时把 ω 和rpm的关系代入:
其中PP是电机极对数;
- 基础3:电机力矩计算公式
- 推导3:转矩常数Kt和磁通的关系
在Ld=Lq的理想情况下,即Im=Is, 控制角度等于90度,上式力矩公式变成:
Te=32P2λafIs=KtIs
所以转矩常数Kt和磁通的关系就是:
()Kt=32P2λaf−−−−−(12)
注意这里磁通的写法是 λaf ,和上文中的 磁通ϕ是同一物理含义,只是写法不同。
- 推导4:转矩常数Kt和反电势常数Ke的关系
即由式(9)和式(12) 可以推导出:
由此可见转矩常数Kt和反电势常数Ke之间是有一个固定的比例关系的。