矩阵相乘满足交换律的情况

本文探讨了矩阵运算中的基本性质,包括零矩阵、数量矩阵、单位矩阵,以及它们如何影响矩阵乘法的结合律、分配律和交换律。此外,还涵盖了伴随矩阵、逆矩阵、对角矩阵、准对角矩阵、幂运算、矩阵减去单位矩阵的特性,以及伴随和逆在AI中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵相乘满足:
结合律,分配律,部分矩阵满足交换律:

即 A*B=B*A.

(1) 1个是零矩阵,

(2) 1数量矩阵,

(3) 1单位矩阵,

(4) 积为单位矩阵,

(5) 伴随矩阵(A*),

(6) 逆矩阵(A^-1),

(7) 2对角矩阵,

(8) 2个准对角矩阵,

(9) 同底不同幂(A^m与A^n)

(10) 减E可逆(A可逆,(A-E)^-1与A可交换)

欢迎补充,持续更新ing...

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值