LRN局部相应归一化

本笔记记录学习 LRN(Local Response Normalization),若有错误,欢迎批评指正,学习交流。

1.侧抑制(lateral inhibition)

这里写图片描述

2.计算公式

Hinton在2012年的Alexnet网络中给出其具体的计算公式如下:

这里写图片描述

公式看上去比较复杂,但理解起来非常简单。i表示第i个核在位置(x,y)运用激活函数ReLU后的输出,n是同一位置上临近的kernal map的数目,N是kernal的总数。参数K,n,alpha,belta都是超参数,一般设置k=2,n=5,aloha=1*e-4,beta=0.75。

这里写图片描述


3.后期争议

在2015年 Very Deep Convolutional Networks for Large-Scale Image Recognition.提到LRN基本没什么用。


示例:

实验环境:windows 7,anaconda 3(Python 3.5),tensorflow(gpu/cpu) 
函数:tf.nn.lrn(input,depth_radius=None,bias=None,alpha=None,beta=None,name=None)

函数解释援引自tensorflow官方文档 
https://www.tensorflow.org/api_docs/python/tf/nn/local_response_normalization 
The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently. Within a given vector, each component is divided by the weighted, squared sum of inputs within depth_radius. In detail, 
sqr_sum[a, b, c, d] = 
sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2) 
output = input / (bias + alpha * sqr_sum) ** beta

背景知识: 
tensorflow官方文档中的tf.nn.lrn函数给出了局部响应归一化的论文出处 
详见http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks 
为什么要有局部响应归一化(Local Response Normalization)? 
详见http://blog.csdn.net/hduxiejun/article/details/70570086

局部响应归一化原理是仿造生物学上活跃的神经元对相邻神经元的抑制现象(侧抑制),然后根据论文有公式如下 
这里写图片描述

公式解释: 
因为这个公式是出自CNN论文的,所以在解释这个公式之前读者应该了解什么是CNN,可以参见 
http://blog.csdn.net/whiteinblue/article/details/25281459 
http://blog.csdn.net/stdcoutzyx/article/details/41596663 
http://www.jeyzhang.com/cnn-learning-notes-1.html 
这个公式中的a表示卷积层(包括卷积操作和池化操作)后的输出结果,这个输出结果的结构是一个四维数组[batch,height,width,channel],这里可以简单解释一下,batch就是批次数(每一批为一张图片),height就是图片高度,width就是图片宽度,channel就是通道数可以理解成一批图片中的某一个图片经过卷积操作后输出的神经元个数(或是理解成处理后的图片深度)。ai(x,y)表示在这个输出结构中的一个位置[a,b,c,d],可以理解成在某一张图中的某一个通道下的某个高度和某个宽度位置的点,即第a张图的第d个通道下的高度为b宽度为c的点。论文公式中的N表示通道数(channel)。a,n/2,k,α,β分别表示函数中的input,depth_radius,bias,alpha,beta,其中n/2,k,α,β都是自定义的,特别注意一下∑叠加的方向是沿着通道方向的,即每个点值的平方和是沿着a中的第3维channel方向的,也就是一个点同方向的前面n/2个通道(最小为第0个通道)和后n/2个通道(最大为第d-1个通道)的点的平方和(共n+1个点)。而函数的英文注解中也说明了把input当成是d个3维的矩阵,说白了就是把input的通道数当作3维矩阵的个数,叠加的方向也是在通道方向。 
画个简单的示意图: 
这里写图片描述
实验代码:

import tensorflow as tf
import numpy as np
x = np.array([i for i in range(1,33)]).reshape([2,2,2,4])
y = tf.nn.lrn(input=x,depth_radius=2,bias=0,alpha=1,beta=1)

with tf.Session() as sess:
    print(x)
    print('#############')
    print(y.eval())
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

这里写图片描述 
结果解释: 
这里要注意一下,如果把这个矩阵变成图片的格式是这样的 
这里写图片描述 
然后按照上面的叙述我们可以举个例子比如26对应的输出结果0.00923952计算如下 
26/(0+1*(25^2+26^2+27^2+28^2))^1



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值