Sylvester结式应用推广

【定理】 R R R为域,非 0 0 0多项式 F = a 0 x m + a 1 x m − 1 + … + a m 、 G = b 0 x l + b 1 x l − 1 + … + b l ∈ R [ x ] F = a_{0}x^{m} + a_{1}x^{m - 1} + \ldots + a_{m}、G = b_{0}x^{l} + b_{1}x^{l - 1} + \ldots + b_{l} \in R\lbrack x\rbrack F=a0xm+a1xm1++amG=b0xl+b1xl1++blR[x],并且 deg ⁡ ( F ) = m 、 deg ⁡ ( G ) = l 、 m ≥ l > 0 \deg(F) = m、\deg(G) = l、m \geq l > 0 deg(F)=mdeg(G)=lml>0。则存在多项式 A j 、 B j 、 S j ∈ R [ x ] A_{j}、B_{j}、S_{j} \in R\lbrack x\rbrack AjBjSjR[x],满足 A j F + B j G = S j A_{j}F + B_{j}G = S_{j} AjF+BjG=Sj,其中 deg ⁡ ( A j ) < l − j 、 deg ⁡ ( B j ) < m − j 、 deg ⁡ ( S ) ≤ j \deg\left( A_{j} \right) < l - j、\deg\left( B_{j} \right) < m - j、\deg(S) \leq j deg(Aj)<ljdeg(Bj)<mjdeg(S)j

【证明思路】 为了举例说明,不妨设 m = 6 、 l = 4 、 j = 2 m = 6、l = 4、j = 2 m=6l=4j=2,则 m − j = 4 、 l − j = 2 m - j = 4、l - j = 2 mj=4lj=2那么仿照Sylvester矩阵构造一个 ( m + l − 2 j ) × ( m + l − j ) = 6 × 8 (m + l - 2j) \times (m + l - j) = 6 \times 8 (m+l2j)×(m+lj)=6×8的辅助矩阵

( a 0 a 1 a 2 a 3 a 4 a 5 a 6 0 0 a 0 a 1 a 2 a 3 a 4 a 5 a 6 b 0 b 1 b 2 b 3 b 4 0 0 0 0 b 0 b 1 b 2 b 3 b 4 0 0 0 0 b 0 b 1 b 2 b 3 b 4 0 0 0 0 b 0 b 1 b 2 b 3 b 4 )       } l − j = 2 行           } m − j = 4 行 \begin{matrix} \begin{pmatrix} a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & 0 \\ 0 & a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\ b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 & 0 & 0 \\ 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 & 0 \\ 0 & 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 \\ 0 & 0 & 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} \end{pmatrix} & \begin{matrix} \left. \ \begin{matrix} \ \\ \ \end{matrix} \right\} & l - j = 2行 \\ \left. \ \begin{matrix} \ \\ \ \\ \ \\ \ \end{matrix} \right\} & m - j = 4行 \end{matrix} \end{matrix} a00b0000a1a0b1b000a2a1b2b1b00a3a2b3b2b1b0a4a3b4b3b2b1a5a40b4b3b2a6a500b4b30a6000b4    }      lj=2mj=4

经过一系列的初等行变换,也就是模拟辗转相除法之后,该矩阵可变成如下形式(上三角):

( b 0 b 1 b 2 b 3 b 4 0 0 0 0 b 0 b 1 b 2 b 3 b 4 0 0 0 0 b 0 b 1 b 2 b 3 b 4 0 0 0 0 b 0 b 1 b 2 b 3 b 4 0 0 0 0 c 10 c 11 c 12 c 13 0 0 0 0 0 c 20 c 21 c 22 ) ( x 5 x 4 x 3 x 2 x 1 ) = ( . . . . . c 20 x 4 + c 21 x 3 + c 22 x 2 ) \begin{pmatrix} b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 & 0 & 0 \\ 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 & 0 \\ 0 & 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 \\ 0 & 0 & 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} \\ 0 & 0 & 0 & 0 & c_{10} & c_{11} & c_{12} & c_{13} \\ 0 & 0 & 0 & 0 & 0 & c_{20} & c_{21} & c_{22} \end{pmatrix}\begin{pmatrix} x^{5} \\ x^{4} \\ x^{3} \\ x^{2} \\ x \\ 1 \end{pmatrix} = \begin{pmatrix} . \\ . \\ . \\ . \\ . \\ c_{20}x^{4} + c_{21}x^{3} + c_{22}x^{2} \end{pmatrix} b000000b1b00000b2b1b0000b3b2b1b000b4b3b2b1c1000b4b3b2c11c2000b4b3c12c21000b4c13c22 x5x4x3x2x1 = .....c20x4+c21x3+c22x2

而对于原来的辅助矩阵,总是有恒等式成立:

( a 0 a 1 a 2 a 3 a 4 a 5 a 6 0 0 a 0 a 1 a 2 a 3 a 4 a 5 a 6 b 0 b 1 b 2 b 3 b 4 0 0 0 0 b 0 b 1 b 2 b 3 b 4 0 0 0 0 b 0 b 1 b 2 b 3 b 4 0 0 0 0 b 0 b 1 b 2 b 3 b 4 ) ( x 5 x 4 x 3 x 2 x 1 ) = ( x l − j − 1 = 1 F x l − j − 2 = 0 F x m − j − 1 = 3 G x m − j − 2 = 2 G x m − j − 3 = 1 G x m − j − 4 = 0 G ) \begin{pmatrix} a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & 0 \\ 0 & a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\ b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 & 0 & 0 \\ 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 & 0 \\ 0 & 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 \\ 0 & 0 & 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} \end{pmatrix}\begin{pmatrix} x^{5} \\ x^{4} \\ x^{3} \\ x^{2} \\ x \\ 1 \end{pmatrix} = \begin{pmatrix} x^{l - j - 1 = 1}F \\ x^{l - j - 2 = 0}F \\ x^{m - j - 1 = 3}G \\ x^{m - j - 2 = 2}G \\ x^{m - j - 3 = 1}G \\ x^{m - j - 4 = 0}G \end{pmatrix} a00b0000a1a0b1b000a2a1b2b1b00a3a2b3b2b1b0a4a3b4b3b2b1a5a40b4b3b2a6a500b4b30a6000b4 x5x4x3x2x1 = xlj1=1Fxlj2=0Fxmj1=3Gxmj2=2Gxmj3=1Gxmj4=0G

综上可得:

E 1 E 2 … E k ( a 0 a 1 a 2 a 3 a 4 a 5 a 6 0 0 a 0 a 1 a 2 a 3 a 4 a 5 a 6 b 0 b 1 b 2 b 3 b 4 0 0 0 0 b 0 b 1 b 2 b 3 b 4 0 0 0 0 b 0 b 1 b 2 b 3 b 4 0 0 0 0 b 0 b 1 b 2 b 3 b 4 ) ( x 5 x 4 x 3 x 2 x 1 ) = ( b 0 b 1 b 2 b 3 b 4 0 0 0 0 b 0 b 1 b 2 b 3 b 4 0 0 0 0 b 0 b 1 b 2 b 3 b 4 0 0 0 0 b 0 b 1 b 2 b 3 b 4 0 0 0 0 c 10 c 11 c 12 c 13 0 0 0 0 0 c 20 c 21 c 22 ) ( x 5 x 4 x 3 x 2 x 1 ) = E 1 E 2 … E k ( x l − j − 1 = 1 F x l − j − 2 = 0 F x m − j − 1 = 3 G x m − j − 2 = 2 G x m − j − 3 = 1 G x m − j − 4 = 0 G ) = ( . . . . . c 20 x 4 + c 21 x 3 + c 22 x 2 ) {E_{1}E_{2}\ldots E_{k}\begin{pmatrix} a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & 0 \\ 0 & a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\ b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 & 0 & 0 \\ 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 & 0 \\ 0 & 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 \\ 0 & 0 & 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} \end{pmatrix}\begin{pmatrix} x^{5} \\ x^{4} \\ x^{3} \\ x^{2} \\ x \\ 1 \end{pmatrix} }{= \begin{pmatrix} b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 & 0 & 0 \\ 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 & 0 \\ 0 & 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 \\ 0 & 0 & 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} \\ 0 & 0 & 0 & 0 & c_{10} & c_{11} & c_{12} & c_{13} \\ 0 & 0 & 0 & 0 & 0 & c_{20} & c_{21} & c_{22} \end{pmatrix}\begin{pmatrix} x^{5} \\ x^{4} \\ x^{3} \\ x^{2} \\ x \\ 1 \end{pmatrix} }{= E_{1}E_{2}\ldots E_{k}\begin{pmatrix} x^{l - j - 1 = 1}F \\ x^{l - j - 2 = 0}F \\ x^{m - j - 1 = 3}G \\ x^{m - j - 2 = 2}G \\ x^{m - j - 3 = 1}G \\ x^{m - j - 4 = 0}G \end{pmatrix} = \begin{pmatrix} . \\ . \\ . \\ . \\ . \\ c_{20}x^{4} + c_{21}x^{3} + c_{22}x^{2} \end{pmatrix}} E1E2Ek a00b0000a1a0b1b000a2a1b2b1b00a3a2b3b2b1b0a4a3b4b3b2b1a5a40b4b3b2a6a500b4b30a6000b4 x5x4x3x2x1 = b000000b1b00000b2b1b0000b3b2b1b000b4b3b2b1c1000b4b3b2c11c2000b4b3c12c21000b4c13c22 x5x4x3x2x1 =E1E2Ek xlj1=1Fxlj2=0Fxmj1=3Gxmj2=2Gxmj3=1Gxmj4=0G = .....c20x4+c21x3+c22x2

观察可得:

∣ b 0 b 1 b 2 b 3 b 4 0 0 b 0 b 1 b 2 b 3 b 4 0 0 b 0 b 1 b 2 b 3 0 0 0 b 0 b 1 b 2 0 0 0 0 c 10 c 11 0 0 0 0 0 c 20 ∣ = c 20 × b 0 4 c 10 = ∣ E 1 E 2 … E k ∣ ∣ a 0 a 1 a 2 a 3 a 4 a 5 0 a 0 a 1 a 2 a 3 a 4 b 0 b 1 b 2 b 3 b 4 0 0 b 0 b 1 b 2 b 3 b 4 0 0 b 0 b 1 b 2 b 3 0 0 0 b 0 b 1 b 2 ∣ \left| \begin{matrix} b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 \\ 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} \\ 0 & 0 & b_{0} & b_{1} & b_{2} & b_{3} \\ 0 & 0 & 0 & b_{0} & b_{1} & b_{2} \\ 0 & 0 & 0 & 0 & c_{10} & c_{11} \\ 0 & 0 & 0 & 0 & 0 & c_{20} \end{matrix} \right| = c_{20} \times b_{0}^{4}c_{10} = \left| E_{1}E_{2}\ldots E_{k} \right|\left| \begin{matrix} a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\ 0 & a_{0} & a_{1} & a_{2} & a_{3} & a_{4} \\ b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 \\ 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} \\ 0 & 0 & b_{0} & b_{1} & b_{2} & b_{3} \\ 0 & 0 & 0 & b_{0} & b_{1} & b_{2} \end{matrix} \right| b000000b1b00000b2b1b0000b3b2b1b000b4b3b2b1c1000b4b3b2c11c20 =c20×b04c10=E1E2Ek a00b0000a1a0b1b000a2a1b2b1b00a3a2b3b2b1b0a4a3b4b3b2b1a5a40b4b3b2

∣ b 0 b 1 b 2 b 3 b 4 0 0 b 0 b 1 b 2 b 3 0 0 0 b 0 b 1 b 2 b 4 0 0 0 b 0 b 1 b 3 0 0 0 0 c 10 c 12 0 0 0 0 0 c 21 ∣ = c 21 × b 0 4 c 10 = ∣ E 1 E 2 … E k ∣ ∣ a 0 a 1 a 2 a 3 a 4 a 6 0 a 0 a 1 a 2 a 3 a 5 b 0 b 1 b 2 b 3 b 4 0 0 b 0 b 1 b 2 b 3 0 0 0 b 0 b 1 b 2 b 4 0 0 0 b 0 b 1 b 3 ∣ \left| \begin{matrix} b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 \\ 0 & b_{0} & b_{1} & b_{2} & b_{3} & 0 \\ 0 & 0 & b_{0} & b_{1} & b_{2} & b_{4} \\ 0 & 0 & 0 & b_{0} & b_{1} & b_{3} \\ 0 & 0 & 0 & 0 & c_{10} & c_{12} \\ 0 & 0 & 0 & 0 & 0 & c_{21} \end{matrix} \right| = c_{21} \times b_{0}^{4}c_{10} = \left| E_{1}E_{2}\ldots E_{k} \right|\left| \begin{matrix} a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{6} \\ 0 & a_{0} & a_{1} & a_{2} & a_{3} & a_{5} \\ b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 \\ 0 & b_{0} & b_{1} & b_{2} & b_{3} & 0 \\ 0 & 0 & b_{0} & b_{1} & b_{2} & b_{4} \\ 0 & 0 & 0 & b_{0} & b_{1} & b_{3} \end{matrix} \right| b000000b1b00000b2b1b0000b3b2b1b000b4b3b2b1c10000b4b3c12c21 =c21×b04c10=E1E2Ek a00b0000a1a0b1b000a2a1b2b1b00a3a2b3b2b1b0a4a3b4b3b2b1a6a500b4b3

∣ b 0 b 1 b 2 b 3 b 4 0 0 b 0 b 1 b 2 b 3 0 0 0 b 0 b 1 b 2 0 0 0 0 b 0 b 1 b 4 0 0 0 0 c 10 c 13 0 0 0 0 0 c 22 ∣ = c 22 × b 0 4 c 10 = ∣ E 1 E 2 … E k ∣ ∣ a 0 a 1 a 2 a 3 a 4 0 0 a 0 a 1 a 2 a 3 a 6 b 0 b 1 b 2 b 3 b 4 0 0 b 0 b 1 b 2 b 3 0 0 0 b 0 b 1 b 2 0 0 0 0 b 0 b 1 b 4 ∣ \left| \begin{matrix} b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 \\ 0 & b_{0} & b_{1} & b_{2} & b_{3} & 0 \\ 0 & 0 & b_{0} & b_{1} & b_{2} & 0 \\ 0 & 0 & 0 & b_{0} & b_{1} & b_{4} \\ 0 & 0 & 0 & 0 & c_{10} & c_{13} \\ 0 & 0 & 0 & 0 & 0 & c_{22} \end{matrix} \right| = c_{22} \times b_{0}^{4}c_{10} = \left| E_{1}E_{2}\ldots E_{k} \right|\left| \begin{matrix} a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & 0 \\ 0 & a_{0} & a_{1} & a_{2} & a_{3} & a_{6} \\ b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 \\ 0 & b_{0} & b_{1} & b_{2} & b_{3} & 0 \\ 0 & 0 & b_{0} & b_{1} & b_{2} & 0 \\ 0 & 0 & 0 & b_{0} & b_{1} & b_{4} \end{matrix} \right| b000000b1b00000b2b1b0000b3b2b1b000b4b3b2b1c100000b4c13c22 =c22×b04c10=E1E2Ek a00b0000a1a0b1b000a2a1b2b1b00a3a2b3b2b1b0a4a3b4b3b2b10a6000b4

c 20 x 4 + c 21 x 3 + c 22 x 2   ∣ E 1 E 2 … E k ∣ × b 0 4 c 10 = A j F + B j G \frac{c_{20}x^{4} + c_{21}x^{3} + c_{22}x^{2}}{\ \left| E_{1}E_{2}\ldots E_{k} \right|} \times b_{0}^{4}c_{10} = A_{j}F + B_{j}G  E1E2Ekc20x4+c21x3+c22x2×b04c10=AjF+BjG

从而可得:

A j F + B j G = ∣ a 0 a 1 a 2 a 3 a 4 a 5 0 a 0 a 1 a 2 a 3 a 4 b 0 b 1 b 2 b 3 b 4 0 0 b 0 b 1 b 2 b 3 b 4 0 0 b 0 b 1 b 2 b 3 0 0 0 b 0 b 1 b 2 ∣ x 2 + ∣ a 0 a 1 a 2 a 3 a 4 a 6 0 a 0 a 1 a 2 a 3 a 5 b 0 b 1 b 2 b 3 b 4 0 0 b 0 b 1 b 2 b 3 0 0 0 b 0 b 1 b 2 b 4 0 0 0 b 0 b 1 b 3 ∣ x + ∣ a 0 a 1 a 2 a 3 a 4 0 0 a 0 a 1 a 2 a 3 a 6 b 0 b 1 b 2 b 3 b 4 0 0 b 0 b 1 b 2 b 3 0 0 0 b 0 b 1 b 2 0 0 0 0 b 0 b 1 b 4 ∣ = S j { A_{j}F + B_{j}G }{= \left| \begin{matrix} a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\ 0 & a_{0} & a_{1} & a_{2} & a_{3} & a_{4} \\ b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 \\ 0 & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} \\ 0 & 0 & b_{0} & b_{1} & b_{2} & b_{3} \\ 0 & 0 & 0 & b_{0} & b_{1} & b_{2} \end{matrix} \right|x^{2} + \left| \begin{matrix} a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{6} \\ 0 & a_{0} & a_{1} & a_{2} & a_{3} & a_{5} \\ b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 \\ 0 & b_{0} & b_{1} & b_{2} & b_{3} & 0 \\ 0 & 0 & b_{0} & b_{1} & b_{2} & b_{4} \\ 0 & 0 & 0 & b_{0} & b_{1} & b_{3} \end{matrix} \right|x + \left| \begin{matrix} a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & 0 \\ 0 & a_{0} & a_{1} & a_{2} & a_{3} & a_{6} \\ b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 \\ 0 & b_{0} & b_{1} & b_{2} & b_{3} & 0 \\ 0 & 0 & b_{0} & b_{1} & b_{2} & 0 \\ 0 & 0 & 0 & b_{0} & b_{1} & b_{4} \end{matrix} \right| }{= S_{j}} AjF+BjG= a00b0000a1a0b1b000a2a1b2b1b00a3a2b3b2b1b0a4a3b4b3b2b1a5a40b4b3b2 x2+ a00b0000a1a0b1b000a2a1b2b1b00a3a2b3b2b1b0a4a3b4b3b2b1a6a500b4b3 x+ a00b0000a1a0b1b000a2a1b2b1b00a3a2b3b2b1b0a4a3b4b3b2b10a6000b4 =Sj

命题得证,其中:

S j = ∣ a 0 a 1 a 2 a 3 a 4 ( a 5 x + a 6 ) x 0 a 0 a 1 a 2 a 3 a 4 x 2 + a 5 x + a 6 b 0 b 1 b 2 b 3 b 4 0 0 b 0 b 1 b 2 b 3 x 2 ( b 4 ) 0 0 b 0 b 1 b 2 x ( b 3 x + b 4 ) 0 0 0 b 0 b 1 b 2 x 2 + b 3 x + b 4 ∣ = ∣ a 0 a 1 a 2 a 3 a 4 x l − j − 1 = 1 F 0 a 0 a 1 a 2 a 3 x l − j − 2 = 0 F b 0 b 1 b 2 b 3 b 4 x m − j − 1 = 3 G 0 b 0 b 1 b 2 b 3 x m − j − 2 = 2 G 0 0 b 0 b 1 b 2 x m − j − 3 = 1 G 0 0 0 b 0 b 1 x m − j − 4 = 0 G ∣ S_{j} = \left| \begin{matrix} a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & \left( a_{5}x + a_{6} \right)x \\ 0 & a_{0} & a_{1} & a_{2} & a_{3} & a_{4}x^{2} + a_{5}x + a_{6} \\ b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & 0 \\ 0 & b_{0} & b_{1} & b_{2} & b_{3} & x^{2}\left( b_{4} \right) \\ 0 & 0 & b_{0} & b_{1} & b_{2} & x\left( b_{3}x + b_{4} \right) \\ 0 & 0 & 0 & b_{0} & b_{1} & b_{2}x^{2} + b_{3}x + b_{4} \end{matrix} \right| = \left| \begin{matrix} a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & x^{l - j - 1 = 1}F \\ 0 & a_{0} & a_{1} & a_{2} & a_{3} & x^{l - j - 2 = 0}F \\ b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & x^{m - j - 1 = 3}G \\ 0 & b_{0} & b_{1} & b_{2} & b_{3} & x^{m - j - 2 = 2}G \\ 0 & 0 & b_{0} & b_{1} & b_{2} & x^{m - j - 3 = 1}G \\ 0 & 0 & 0 & b_{0} & b_{1} & x^{m - j - 4 = 0}G \end{matrix} \right| Sj= a00b0000a1a0b1b000a2a1b2b1b00a3a2b3b2b1b0a4a3b4b3b2b1(a5x+a6)xa4x2+a5x+a60x2(b4)x(b3x+b4)b2x2+b3x+b4 = a00b0000a1a0b1b000a2a1b2b1b00a3a2b3b2b1b0a4a3b4b3b2b1xlj1=1Fxlj2=0Fxmj1=3Gxmj2=2Gxmj3=1Gxmj4=0G

  • 13
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值