希尔伯特基定理

【引理1】(Dickson定理)

对于 ∀ A ⊂ N n \forall A \subset \mathbb{N}^{n} ANn ∃ \exists 有限非空集 B ⊂ A B \subset A BA,使得 ⟨ x A ⟩ = ⟨ x B ⟩ \left\langle x^{A} \right\rangle = \left\langle x^{B} \right\rangle xA=xB

【证明】

下面利用数学归纳法证明:

  1. 首先当 n = 1 n = 1 n=1时成立

此时对于 ∀ A ⊂ N \forall A \subset \mathbb{N} AN,取 B = { min ⁡ ( A ) } B = \left\{ \min(A) \right\} B={min(A)},显然有 ⟨ x A ⟩ = ⟨ x B ⟩ \left\langle x^{A} \right\rangle = \left\langle x^{B} \right\rangle xA=xB,此时集 B B B有限且非空。

  1. 假定当 n ≤ k n \leq k nk时集 B ( k ) B^{(k)} B(k)有限且非空,需要证明 n = k + 1 n = k + 1 n=k+1时集 B ( k + 1 ) B^{(k + 1)} B(k+1)有限且非空

A ( k ) A^{(k)} A(k)中的元素形如 ( a 1 , a 2 … a k ) \left( a_{1},a_{2}\ldots a_{k} \right) (a1,a2ak) A ( k + 1 ) A^{(k + 1)} A(k+1)中的元素形如 ( a 1 , a 2 … a k , a k + 1 ) \left( a_{1},a_{2}\ldots a_{k},a_{k + 1} \right) (a1,a2ak,ak+1)。设 ( b ‾ 1 , b ‾ 2 … b ‾ k , b ‾ k + 1 ) ∈ A ( k + 1 ) \left( {\overline{b}}_{1},{\overline{b}}_{2}\ldots{\overline{b}}_{k},{\overline{b}}_{k + 1} \right) \in A^{(k + 1)} (b1,b2bk,bk+1)A(k+1),其中 b ‾ k + 1 = min ⁡ ( a k + 1 ) {\overline{b}}_{k + 1} = \min\left( a_{k + 1} \right) bk+1=min(ak+1) B ‾ ( k ) {\overline{B}}^{(k)} B(k) b ‾ k + 1 = min ⁡ ( a k + 1 ) {\overline{b}}_{k + 1} = \min\left( a_{k + 1} \right) bk+1=min(ak+1)时的有限非空集,且有 ( b ‾ 1 , b ‾ 2 … b ‾ k ) ∈ B ‾ ( k ) \left( {\overline{b}}_{1},{\overline{b}}_{2}\ldots{\overline{b}}_{k} \right) \in {\overline{B}}^{(k)} (b1,b2bk)B(k)。那么有 ( b ‾ 1 , b ‾ 2 … b ‾ k , b ‾ k + 1 ) ∈ B ( k + 1 ) \left( {\overline{b}}_{1},{\overline{b}}_{2}\ldots{\overline{b}}_{k},{\overline{b}}_{k + 1} \right) \in B^{(k + 1)} (b1,b2bk,bk+1)B(k+1),也就是 B ( k + 1 ) \mathbf{B}^{\left( \mathbf{k + 1} \right)} B(k+1)非空

由于 x B x^{B} xB中所有元素两两之间无法互相整除(若整除,只保留一个元素),对于 ∀ ( b 1 , b 2 … b k , b k + 1 ) ∈ B ( k + 1 ) \forall\left( b_{1},b_{2}\ldots b_{k},b_{k + 1} \right) \in B^{(k + 1)} (b1,b2bk,bk+1)B(k+1),在 b 1 , b 2 … b k b_{1},b_{2}\ldots b_{k} b1,b2bk中必有一些元素比 b ‾ 1 , b ‾ 2 … b ‾ k {\overline{b}}_{1},{\overline{b}}_{2}\ldots{\overline{b}}_{k} b1,b2bk的对应元素小,且 b i < b ‾ i b_{i} < {\overline{b}}_{i} bi<bi的元素对总数目一定是小于 k k k;而 b 1 , b 2 … b k , b k + 1 b_{1},b_{2}\ldots b_{k},b_{k + 1} b1,b2bk,bk+1中剩余的满足 b j ≥ b ‾ j b_{j} \geq {\overline{b}}_{j} bjbj的所有 b j b_{j} bj必然可由这些 b i b_{i} bi来确定。这是因为当 n ≤ k n \leq k nk时集 B ( k − ∗ ) B^{(k - *)} B(k−∗)有限且非空,剔除 b i b_{i} bi元素后, b j b_{j} bj必然是 B ( k − ∗ ) B^{(k - *)} B(k−∗)中的对应元素。由于 b ‾ 1 , b ‾ 2 … b ‾ k {\overline{b}}_{1},{\overline{b}}_{2}\ldots{\overline{b}}_{k} b1,b2bk是固定的,而 b i < b ‾ i b_{i} < {\overline{b}}_{i} bi<bi,所以 b i b_{i} bi的取值情况是有限的,也就是 B ( k + 1 ) \mathbf{B}^{\left( \mathbf{k + 1} \right)} B(k+1)有限。

【引理2】

F F F为一域, I I I R = F [ x 1 , x 2 … x n ] R = F\left\lbrack x_{1},x_{2}\ldots x_{n} \right\rbrack R=F[x1,x2xn]中的理想,若 G ⊂ I G \subset I GI是有限集,且 ⟨ l t ( G ) ⟩ = ⟨ l t ( I ) ⟩ \left\langle lt(G) \right\rangle = \left\langle lt(I) \right\rangle lt(G)=lt(I),则 ⟨ G ⟩ = I \left\langle G \right\rangle = I G=I

【证明】

因为 G ⊂ I G \subset I GI,显然 ⟨ G ⟩ ⊂ I \left\langle G \right\rangle \subset I GI

G = { g 1 , g 2 … g t } G = \{ g_{1},g_{2}\ldots g_{t}\} G={g1,g2gt},则 ∀ f ∈ I \forall f \in I fI,根据带余除法得

f = q 1 g 1 + … + q t g t + r f = q_{1}g_{1} + \ldots + q_{t}g_{t} + r f=q1g1++qtgt+r

那么有 l t ( r ) ∈ ⟨ l t ( I ) ⟩ ⇒ l t ( r ) ∈ ⟨ l t ( G ) ⟩ lt(r) \in \left\langle lt(I) \right\rangle \Rightarrow lt(r) \in \left\langle lt(G) \right\rangle lt(r)lt(I)lt(r)lt(G),由于 r r r是带余除法余数,即满足项序关系 l t ( r ) < l t ( g 1 ) 、 l t ( r ) < l t ( g 2 ) … l t ( r ) < l t ( g t ) lt(r) < lt\left( g_{1} \right)、lt(r) < lt\left( g_{2} \right)\ldots lt(r) < lt(g_{t}) lt(r)<lt(g1)lt(r)<lt(g2)lt(r)<lt(gt),所以 r ≡ 0 r \equiv 0 r0,从而 f ∈ I ⇒ f ∈ ⟨ G ⟩ f \in I \Rightarrow f \in \left\langle G \right\rangle fIfG,所以 I ⊂ ⟨ G ⟩ I \subset \left\langle G \right\rangle IG

综上可得 ⟨ G ⟩ = I \left\langle G \right\rangle = I G=I

【Hilbert 基定理】

F F F为一域, I I I R = F [ x 1 , x 2 … x n ] R = F\left\lbrack x_{1},x_{2}\ldots x_{n} \right\rbrack R=F[x1,x2xn]中的理想, I I I可有限生成。

【证明】

根据 【引理1】 因为单项理想 ⟨ l t ( I ) ⟩ \left\langle lt(I) \right\rangle lt(I)可以有限生成,令 G ⊂ I G \subset I GI是有限集,满足 ⟨ l t ( G ) ⟩ = ⟨ l t ( I ) ⟩ \left\langle lt(G) \right\rangle = \left\langle lt(I) \right\rangle lt(G)=lt(I)。根据 【引理2】 ⟨ G ⟩ = I \left\langle G \right\rangle = I G=I,也就是 I I I可有限生成。

【备注】

此定理表明 R = F [ x 1 , x 2 … x n ] R = F\left\lbrack x_{1},x_{2}\ldots x_{n} \right\rbrack R=F[x1,x2xn]是诺特环,满足理想升链条件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值