Gröbner基的相关知识——第一部分

【Gröbner基定义】

设多项式环 R = F [ x 1 , x 2 … x n ] R = F\left\lbrack x_{1},x_{2}\ldots x_{n} \right\rbrack R=F[x1,x2xn]中的理想 I I I和某一单项序 < < <,当 I I I的有限子集 G G G满足 ⟨ l t ( G ) ⟩ = ⟨ l t ( I ) ⟩ \left\langle lt(G) \right\rangle = \left\langle lt(I) \right\rangle lt(G)=lt(I)时,称 G G G I I I的Gröbner基。由于Gröbner基不是唯一的,全体Gröbner基记作

G B ( I ) = { G ∈ 2 I | ⟨ l t ( G ) ⟩ = ⟨ l t ( I ) ⟩ } GB(I) = \left\{ G \in 2^{I} \middle| \left\langle lt(G) \right\rangle = \left\langle lt(I) \right\rangle \right\} GB(I)={G2I lt(G)=lt(I)}

其中 2 I 2^{I} 2I是集合 I I I的幂集。

【个人理解】

根据希尔伯特基定理,可以确定任何 F [ x 1 , x 2 … x n ] F\left\lbrack x_{1},x_{2}\ldots x_{n} \right\rbrack F[x1,x2xn]上的理想 I I I都可以通过有限的多项式基生产,即 I = ⟨ g 1 , g 2 … g t ⟩ I = \left\langle g_{1},g_{2}\ldots g_{t} \right\rangle I=g1,g2gt。但有一个问题比较棘手,如何 “通过有效算法” 判断某多项式是否属于该理想。Buchberger提出了Gröbner基的概念,然后通过带余除法解决了该问题。

【定理1】

G ∈ G B ( I ) G \in GB(I) GGB(I),则对于任意 f ∈ R f \in R fR,存在唯一的 r ∈ R r \in R rR使得 f − r ∈ I f - r \in I frI,并且 r r r中无单项可被 l t ( G ) lt(G) lt(G)中元素整除,即不可被 G G G约化。

【个人理解】

该定理表明了Gröbner基的良好性质,与一般的整数除法然后取余数一样,余数的形式是唯一的,对于属于理想Gröbner基生成的理想 I I I的多项式 f f f其带余除法的 r r r一定为 0 0 0,也就是 f f f能被 G G G约化。

S \mathbf{S} S多项式定义】

对于非零多项式 g 、 h g、h gh,设 α = deg ⁡ g 、 β = deg ⁡ h 、 x γ = l c m ( x α , x β ) \alpha = \deg g、\beta = \deg h、x^{\gamma} = lcm\left( x^{\alpha},x^{\beta} \right) α=deggβ=deghxγ=lcm(xα,xβ),定义 g 、 h g、h gh的多项式为

S ( g , h ) = ( x γ l t ( g ) g − x γ l t ( h ) h ) ∈ F [ x 1 , x 2 … x n ] S(g,h) = \left( \frac{x^{\gamma}}{lt(g)}g - \frac{x^{\gamma}}{lt(h)}h \right) \in F\left\lbrack x_{1},x_{2}\ldots x_{n} \right\rbrack S(g,h)=(lt(g)xγglt(h)xγh)F[x1,x2xn]

【引理1】

g 1 , g 2 … g s ∈ F [ x 1 , x 2 … x n ] 、 α 1 , α 2 … α s ∈ N n 、 c 1 , c 2 … c s ∈ F − { 0 } g_{1},g_{2}\ldots g_{s} \in F\left\lbrack x_{1},x_{2}\ldots x_{n} \right\rbrack 、\alpha_{1},\alpha_{2}\ldots\alpha_{s} \in \mathbb{N}^{n}、c_{1},c_{2}\ldots c_{s} \in F - \text{\{}0\} g1,g2gsF[x1,x2xn]α1,α2αsNnc1,c2csF{0}

f = ∑ 1 ≤ i ≤ s c i x α i g i ∈ F [ x 1 , x 2 … x n ] f = \sum_{1 \leq i \leq s}^{}{c_{i}x^{\alpha_{i}}g_{i} \in F\left\lbrack x_{1},x_{2}\ldots x_{n} \right\rbrack} f=1iscixαigiF[x1,x2xn]

且有 δ ∈ N n \delta \in \mathbb{N}^{n} δNn使得 α i + deg ⁡ g i = δ   ( 1 ≤ i ≤ s ) 、 deg ⁡ f < δ \alpha_{i} + \deg g_{i} = \delta\ (1 \leq i \leq s)、\deg f < \delta αi+deggi=δ (1is)degf<δ。该过程称为领项消去

于是,那么 f f f也可表示为

f = ∑ 1 ≤ i < j ≤ s c i j x δ − γ i j S ( g i , g j ) f = \sum_{1 \leq i < j \leq s}^{}{c_{ij}x^{\delta - \gamma_{ij}}S\left( g_{i},g_{j} \right)} f=1i<jscijxδγijS(gi,gj)

其中 x γ i j = l c m ( l t ( g i ) , l t ( g j ) ) x^{\gamma_{ij}} = lcm\left( lt\left( g_{i} \right),lt\left( g_{j} \right) \right) xγij=lcm(lt(gi),lt(gj))

【证明思路】

利用数学归纳法,当 s = 2 s = 2 s=2时根据 S S S多项式定义,可知成立。

假定 s = k + 1 s = k + 1 s=k+1时成立,当 s = k + 1 s = k + 1 s=k+1

f = ∑ 1 ≤ i ≤ k + 1 c i x α i g i = 1 k ∑ m = 1 k + 1 ∑ 1 ≤ i ≤ k i ≠ m c i x α i g i f = \sum_{1 \leq i \leq k + 1}^{}{c_{i}x^{\alpha_{i}}g_{i}} = \frac{1}{k}\sum_{m = 1}^{k + 1}{\sum_{\begin{array}{r} 1 \leq i \leq k \\ i \neq m \end{array}}^{}{c_{i}x^{\alpha_{i}}g_{i}}} f=1ik+1cixαigi=k1m=1k+11iki=mcixαigi

其中 ∑ 1 ≤ i ≤ k i ≠ m c i x α i g i \sum_{\begin{array}{r} 1 \leq i \leq k \\ i \neq m \end{array}}^{}{c_{i}x^{\alpha_{i}}g_{i}} 1iki=mcixαigi可以利用 s = k s = k s=k时的结论转换成 S S S多项式,然后在外层求和 ∑ m = 1 k + 1 ∗ \sum_{m = 1}^{k + 1}* m=1k+1时再合并相同的 S S S多项式。之所以能够合并,是因为不论 m m m取多少 c i j x δ − γ i j S ( g i , g j ) c_{ij}x^{\delta - \gamma_{ij}}S\left( g_{i},g_{j} \right) cijxδγijS(gi,gj)的形式都是一致的。

【个人理解】

由于 deg ⁡ S ( g i , g j ) < γ i j \deg{S\left( g_{i},g_{j} \right)} < \gamma_{ij} degS(gi,gj)<γij,所以 deg ⁡ ( c i j x δ − γ i j S ( g i , g j ) ) < δ \deg\left( c_{ij}x^{\delta - \gamma_{ij}}S\left( g_{i},g_{j} \right) \right) < \delta deg(cijxδγijS(gi,gj))<δ

引理表明, deg ⁡ f < δ \deg f < \delta degf<δ时,表面可执行行领项消去操作;领项消去的过程一定也可以通过 S S S多项式方式计算求得。

另外,此时若 ( ∀ 1 ≤ i < j ≤ s ) ( S ( g i , g j )   r e m   G = 0 ) (\forall 1 \leq i < j \leq s)\left( S\left( g_{i},g_{j} \right)\ rem\ G = 0 \right) (∀1i<js)(S(gi,gj) rem G=0),那么 S ( g i , g j ) S\left( g_{i},g_{j} \right) S(gi,gj)可由 G G G中的多项式线性组合,也就是 f \mathbf{f} f可重新表达为 G \mathbf{G} G中的多项式线性组合此时,所有 deg ⁡ ( c ∗ x ∗ g ∗ ) \deg\left( c_{*}x^{*}g_{*} \right) deg(cxg)被降低也就是 deg ⁡ ( c ∗ x ∗ g ∗ ) < δ \deg\left( c_{*}x^{*}g_{*} \right) < \delta deg(cxg)<δ

【定理2】

G = { g 1 , g 2 … g s } ∈ G B ( G ) ⟺ ∀ ( 1 ≤ i < j ≤ s )     S ( g i , g j )   r e m   G = 0 G = \left\{ g_{1},g_{2}\ldots g_{s} \right\} \in GB(G) \Longleftrightarrow \forall(1 \leq i < j \leq s)\ \ \ S\left( g_{i},g_{j} \right)\ rem\ G = 0 G={g1,g2gs}GB(G)(1i<js)   S(gi,gj) rem G=0

【证明】

易证 ⇒ \Rightarrow ,下面证明 ⇐ \Leftarrow ,即需要证明:若多项式 g ∈ ⟨ G ⟩ \mathbf{g \in}\left\langle \mathbf{G} \right\rangle gG,则 l t ( g ) ∈ ⟨ l t ( G ) ⟩ \mathbf{lt}\left( \mathbf{g} \right)\mathbf{\in}\left\langle \mathbf{lt}\left( \mathbf{G} \right) \right\rangle lt(g)lt(G)

g ∈ ⟨ g 1 , g 2 … g s ⟩ g \in \left\langle g_{1},g_{2}\ldots g_{s} \right\rangle gg1,g2gs

g = ∑ 1 ≤ i ≤ s c i q i g i g = \sum_{1 \leq i \leq s}^{}{c_{i}q_{i}g_{i}} g=1isciqigi

f : = g f: = g f:=g

循环步骤:

考虑 f f f中的每一项,设

δ : = max ⁡ ( deg ⁡ q 1 g 1 , deg ⁡ q 2 g 2 … deg ⁡ q s g s ) \delta: = \max{(\deg{q_{1}g_{1}},\deg{q_{2}g_{2}}\ldots\deg{q_{s}g_{s}})} δ:=max(degq1g1,degq2g2degqsgs)

f ∗ : = ∑ 1 ≤ i ≤ s deg ⁡ ( q i g i ) = δ c i q i g i f^{*}: = \sum_{\begin{array}{r} 1 \leq i \leq s \\ \deg{\left( q_{i}g_{i} \right) = \delta} \end{array}}^{}{c_{i}q_{i}g_{i}} f:=1isdeg(qigi)=δciqigi

deg ⁡ f = δ \deg f = \delta degf=δ,则跳出循环步骤。

deg ⁡ f < δ \deg f < \delta degf<δ。所以必能执行领项消去操作。根据引理1,可得 f f f能表示为

f ∗ = ∑ 1 ≤ i < j ≤ s c i j x δ − γ i j S ( g i , g j ) f^{*} = \sum_{1 \leq i < j \leq s}^{}{c_{ij}x^{\delta - \gamma_{ij}}S\left( g_{i},g_{j} \right)} f=1i<jscijxδγijS(gi,gj)

因为 S ( g i , g j )   r e m   G = 0 S\left( g_{i},g_{j} \right)\ rem\ G = 0 S(gi,gj) rem G=0,所以

f ∗ = f ∗ ∗ = ∑ 1 ≤ i ≤ s ∗ c i q i ∗ g i ∗ f^{*} = f^{**} = \sum_{1 \leq i \leq s^{*}}^{}{c_{i}q_{i}^{*}g_{i}^{*}} f=f∗∗=1isciqigi

然后,进行如下赋值操作

f ≔ f − f ∗ + f ∗ ∗ f ≔ f - f^{*} + f^{**} f:=ff+f∗∗

一轮循环步骤相当于对 f \mathbf{f} f的某部分 f ∗ \mathbf{f}^{\mathbf{*}} f进行了 S \mathbf{S} S多项式替换,即领项消去,每轮循环操作使得 deg ⁡ ( q i g i ) \deg\left( q_{i}g_{i} \right) deg(qigi)都在下降

重复进行循环步骤,直到无法再执行领项消去,此时必有 deg ⁡ f = δ \deg f = \delta degf=δ,必然有 f   r e m   G = 0 f\ rem\ G = 0 f rem G=0,所以 l t ( f ) ∈ ⟨ l t ( ⟨ G ⟩ ) ⟩ lt(f) \in \left\langle lt\left( \left\langle G \right\rangle \right) \right\rangle lt(f)lt(G)。而 f = g f = g f=g,所以 l t ( g ) ∈ ⟨ l t ( G ) ⟩ lt(g) \in \left\langle lt(G) \right\rangle lt(g)lt(G),从而 G = { g 1 , g 2 … g s } G = \left\{ g_{1},g_{2}\ldots g_{s} \right\} G={g1,g2gs}是Gröbner基。

  • 6
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值