Habicht定理中有关子结式命题3.4.6的证明

在这里插入图片描述
在这里插入图片描述
个人认为红色区域有问题,因为 deg ⁡ ( ϕ ( S j ) ) = r \deg{\left( \phi\left( S_{j} \right) \right) = r} deg(ϕ(Sj))=r,当 i ≥ r i \geq r ir时, s u b r e s i ( ϕ ( S j + 1 ) , ϕ ( S j ) ) subres_{i}\left( \phi(S_{j + 1}),\phi\left( S_{j} \right) \right) subresi(ϕ(Sj+1),ϕ(Sj))的定义不存在!!!(按照书中描述,此处似乎用到了子结式的拓广定义)

下面是我的证明过程:

【证明】

(a)

因为 ϕ ( R j + 1 2 ( j − i ) S i ) = ϕ ( s u b r e s i ( S j + 1 , S j ) ) = d e t p o l ( x j − i − 1 ϕ ( S j + 1 ) , … , ϕ ( S j + 1 ) , x j − i ϕ ( S j ) , … , ϕ ( S j ) ) {\phi\left( R_{j + 1}^{2(j - i)}S_{i} \right) }{= \phi\left( subres_{i}\left( S_{j + 1},S_{j} \right) \right) }{= detpol\left( x^{j - i - 1}\phi\left( S_{j + 1} \right),\ldots,\phi\left( S_{j + 1} \right),x^{j - i}\phi\left( S_{j} \right),\ldots,\phi\left( S_{j} \right) \right)} ϕ(Rj+12(ji)Si)=ϕ(subresi(Sj+1,Sj))=detpol(xji1ϕ(Sj+1),,ϕ(Sj+1),xjiϕ(Sj),,ϕ(Sj))

而当 r + 1 ≤ i ≤ j − 1 r + 1 \leq i \leq j - 1 r+1ij1时,有

deg ⁡ ( ϕ ( S j + 1 ) ) = j + 1 > deg ⁡ ( x j − i ϕ ( S j ) ) + 1 = j − ( r + 1 ) + r + 1 = j \deg\left( \phi\left( S_{j + 1} \right) \right) = j + 1 > \deg\left( x^{j - i}\phi\left( S_{j} \right) \right) + 1 = j - (r + 1) + r + 1 = j deg(ϕ(Sj+1))=j+1>deg(xjiϕ(Sj))+1=j(r+1)+r+1=j

此时有 d e t p o l ( x j − i − 1 ϕ ( S j + 1 ) , … , ϕ ( S j + 1 ) , x j − i ϕ ( S j ) , … , ϕ ( S j ) ) = 0 detpol\left( x^{j - i - 1}\phi\left( S_{j + 1} \right),\ldots,\phi\left( S_{j + 1} \right),x^{j - i}\phi\left( S_{j} \right),\ldots,\phi\left( S_{j} \right) \right) = 0 detpol(xji1ϕ(Sj+1),,ϕ(Sj+1),xjiϕ(Sj),,ϕ(Sj))=0,也就是 ϕ ( R j + 1 2 ( j − i ) S i ) = 0 \phi\left( R_{j + 1}^{2(j - i)}S_{i} \right) = 0 ϕ(Rj+12(ji)Si)=0,即 ϕ ( S j − 1 ) = ϕ ( S j − 2 ) = … = ϕ ( S r + 1 ) = 0 \phi\left( S_{j - 1} \right) = \phi\left( S_{j - 2} \right) = \ldots = \phi\left( S_{r + 1} \right) = 0 ϕ(Sj1)=ϕ(Sj2)==ϕ(Sr+1)=0

(b)

  • j = n j = n j=n,有

ϕ ( S r ) = d e t p o l ( x n − r − 1 ϕ ( S n + 1 ) , … , ϕ ( S n + 1 ) , x n − r ϕ ( S n ) , … , ϕ ( S n ) ) \phi\left( S_{r} \right) = detpol\left( x^{n - r - 1}\phi\left( S_{n + 1} \right),\ldots,\phi\left( S_{n + 1} \right),x^{n - r}\phi\left( S_{n} \right),\ldots,\phi\left( S_{n} \right) \right) ϕ(Sr)=detpol(xnr1ϕ(Sn+1),,ϕ(Sn+1),xnrϕ(Sn),,ϕ(Sn))

由于 deg ⁡ ( ϕ ( S n + 1 ) ) = n + 1 = deg ⁡ ( x n − r ϕ ( S n ) ) + 1 = n − r + r + 1 = n + 1 \deg{\left( \phi\left( S_{n + 1} \right) \right) = n + 1 = \deg\left( x^{n - r}\phi\left( S_{n} \right) \right) + 1 = n - r + r + 1 = n + 1} deg(ϕ(Sn+1))=n+1=deg(xnrϕ(Sn))+1=nr+r+1=n+1,所以

ϕ ( S r ) = [ l c ( ϕ ( S n + 1 ) , x ) l c ( ϕ ( S n ) , x ) ] n − r ϕ ( S n ) \phi\left( S_{r} \right) = \left\lbrack lc\left( \phi\left( S_{n + 1} \right),x \right)lc\left( \phi\left( S_{n} \right),x \right) \right\rbrack^{n - r}\phi\left( S_{n} \right) ϕ(Sr)=[lc(ϕ(Sn+1),x)lc(ϕ(Sn),x)]nrϕ(Sn)

  • j < n j < n j<n,则

ϕ ( R j + 1 2 ( j − r ) S r ) = d e t p o l ( x j − r − 1 ϕ ( S j + 1 ) , … , ϕ ( S j + 1 ) , x j − r ϕ ( S j ) , … , ϕ ( S j ) ) \phi\left( R_{j + 1}^{2(j - r)}S_{r} \right) = detpol\left( x^{j - r - 1}\phi\left( S_{j + 1} \right),\ldots,\phi\left( S_{j + 1} \right),x^{j - r}\phi\left( S_{j} \right),\ldots,\phi\left( S_{j} \right) \right) ϕ(Rj+12(jr)Sr)=detpol(xjr1ϕ(Sj+1),,ϕ(Sj+1),xjrϕ(Sj),,ϕ(Sj))

由于

deg ⁡ ( ϕ ( S j + 1 ) ) = j + 1 = deg ⁡ ( x j − r ϕ ( S n ) ) + 1 = j − r + r + 1 = j + 1 \deg{\left( \phi\left( S_{j + 1} \right) \right) = j + 1 = \deg\left( x^{j - r}\phi\left( S_{n} \right) \right) + 1 = j - r + r + 1 = j + 1} deg(ϕ(Sj+1))=j+1=deg(xjrϕ(Sn))+1=jr+r+1=j+1

所以

ϕ ( R j + 1 2 ( j − r ) S r ) = [ ϕ ( R j + 1 ) l c ( ϕ ( S n ) , x ) ] j − r ϕ ( S j ) \phi\left( R_{j + 1}^{2(j - r)}S_{r} \right) = \left\lbrack \phi\left( R_{j + 1} \right)lc\left( \phi\left( S_{n} \right),x \right) \right\rbrack^{j - r}\phi\left( S_{j} \right) ϕ(Rj+12(jr)Sr)=[ϕ(Rj+1)lc(ϕ(Sn),x)]jrϕ(Sj)

ϕ ( R j + 1 j − r S r ) = l c ( ϕ ( S n ) , x ) j − r ϕ ( S j )   \phi\left( R_{j + 1}^{j - r}S_{r} \right) = {lc\left( \phi\left( S_{n} \right),x \right)}^{j - r}\phi\left( S_{j} \right)\ ϕ(Rj+1jrSr)=lc(ϕ(Sn),x)jrϕ(Sj) 

(c)

  • j = n j = n j=n,有

ϕ ( S r − 1 ) = d e t p o l ( x n − r ϕ ( S n + 1 ) , … , ϕ ( S n + 1 ) , x n − r + 1 ϕ ( S n ) , … , x ϕ ( S n ) , ϕ ( S n ) ) = ( − 1 ) n − r + 2 d e t p o l ( x n − r ϕ ( S n + 1 ) , … , x ϕ ( S n + 1 ) , x n − r + 1 ϕ ( S n ) , … , x ϕ ( S n ) , ϕ ( S n ) , ϕ ( S n + 1 ) ) {\phi\left( S_{r - 1} \right) = detpol\left( x^{n - r}\phi\left( S_{n + 1} \right),\ldots,\phi\left( S_{n + 1} \right),x^{n - r + 1}\phi\left( S_{n} \right),\ldots,x\phi\left( S_{n} \right),\phi\left( S_{n} \right) \right) }{= ( - 1)^{n - r + 2}detpol\left( x^{n - r}\phi\left( S_{n + 1} \right),\ldots,x\phi\left( S_{n + 1} \right),x^{n - r + 1}\phi\left( S_{n} \right),\ldots,x\phi\left( S_{n} \right),\phi\left( S_{n} \right),\phi\left( S_{n + 1} \right) \right)} ϕ(Sr1)=detpol(xnrϕ(Sn+1),,ϕ(Sn+1),xnr+1ϕ(Sn),,xϕ(Sn),ϕ(Sn))=(1)nr+2detpol(xnrϕ(Sn+1),,xϕ(Sn+1),xnr+1ϕ(Sn),,xϕ(Sn),ϕ(Sn),ϕ(Sn+1))

由于

deg ⁡ ( x ϕ ( S n + 1 ) ) = n + 2 = deg ⁡ ( x n − r + 1 ϕ ( S n ) ) + 1 = n − r + 1 + r + 1 = n + 2 \deg{\left( x\phi\left( S_{n + 1} \right) \right) = n + 2 = \deg\left( x^{n - r + 1}\phi\left( S_{n} \right) \right) + 1 = n - r + 1 + r + 1 = n + 2} deg(xϕ(Sn+1))=n+2=deg(xnr+1ϕ(Sn))+1=nr+1+r+1=n+2

deg ⁡ ( ϕ ( S n + 1 ) ) = n + 1 = deg ⁡ ( x n − r + 1 ϕ ( S n ) ) \deg{\left( \phi\left( S_{n + 1} \right) \right) = n + 1 = \deg\left( x^{n - r + 1}\phi\left( S_{n} \right) \right)} deg(ϕ(Sn+1))=n+1=deg(xnr+1ϕ(Sn))

所以

ϕ ( S r − 1 ) = [ − l c ( ϕ ( S n + 1 ) , x ) ] n − r d e t p o l ( x n − r + 1 ϕ ( S n ) , … , x ϕ ( S n ) , ϕ ( S n ) , ϕ ( S n + 1 ) ) = [ − l c ( ϕ ( S n + 1 ) , x ) ] n − r p r e m ( ϕ ( S n + 1 ) , ϕ ( S n ) , x ) \phi\left( S_{r - 1} \right) = \left\lbrack - lc\left( \phi\left( S_{n + 1} \right),x \right) \right\rbrack^{n - r}detpol\left( x^{n - r + 1}\phi\left( S_{n} \right),\ldots,x\phi\left( S_{n} \right),\phi\left( S_{n} \right),\phi\left( S_{n + 1} \right) \right) = \left\lbrack - lc\left( \phi\left( S_{n + 1} \right),x \right) \right\rbrack^{n - r}prem\left( \phi\left( S_{n + 1} \right),\phi\left( S_{n} \right),x \right) ϕ(Sr1)=[lc(ϕ(Sn+1),x)]nrdetpol(xnr+1ϕ(Sn),,xϕ(Sn),ϕ(Sn),ϕ(Sn+1))=[lc(ϕ(Sn+1),x)]nrprem(ϕ(Sn+1),ϕ(Sn),x)

  • j < n j < n j<n,有

ϕ ( R j + 1 2 ( j − r + 1 ) S r − 1 ) = d e t p o l ( x j − r ϕ ( S j + 1 ) , … , ϕ ( S j + 1 ) , x j − r + 1 ϕ ( S j ) , … , x ϕ ( S j ) , ϕ ( S j ) ) = ( − 1 ) j − r + 2 d e t p o l ( x j − r ϕ ( S j + 1 ) , … , x ϕ ( S j + 1 ) , x j − r + 1 ϕ ( S j ) , … , x ϕ ( S j ) , ϕ ( S j ) , ϕ ( S j + 1 ) ) {\phi\left( R_{j + 1}^{2(j - r + 1)}S_{r - 1} \right) = detpol\left( x^{j - r}\phi\left( S_{j + 1} \right),\ldots,\phi\left( S_{j + 1} \right),x^{j - r + 1}\phi\left( S_{j} \right),\ldots,x\phi\left( S_{j} \right),\phi\left( S_{j} \right) \right) }{= ( - 1)^{j - r + 2}detpol\left( x^{j - r}\phi\left( S_{j + 1} \right),\ldots,x\phi\left( S_{j + 1} \right),x^{j - r + 1}\phi\left( S_{j} \right),\ldots,x\phi\left( S_{j} \right),\phi\left( S_{j} \right),\phi\left( S_{j + 1} \right) \right)} ϕ(Rj+12(jr+1)Sr1)=detpol(xjrϕ(Sj+1),,ϕ(Sj+1),xjr+1ϕ(Sj),,xϕ(Sj),ϕ(Sj))=(1)jr+2detpol(xjrϕ(Sj+1),,xϕ(Sj+1),xjr+1ϕ(Sj),,xϕ(Sj),ϕ(Sj),ϕ(Sj+1))

由于

deg ⁡ ( x ϕ ( S j + 1 ) ) = j + 2 = deg ⁡ ( x j − r + 1 ϕ ( S n ) ) + 1 = j − r + r + 1 + 1 = j + 2 = deg ⁡ ( ( S j + 1 ) ) + 1 = j + 1 + 1 = j + 2 {\deg\left( x\phi\left( S_{j + 1} \right) \right) = j + 2 }{= \deg\left( x^{j - r + 1}\phi\left( S_{n} \right) \right) + 1 = j - r + r + 1 + 1 = j + 2 }{= \deg{\left( \left( S_{j + 1} \right) \right) + 1} = j + 1 + 1 = j + 2} deg(xϕ(Sj+1))=j+2=deg(xjr+1ϕ(Sn))+1=jr+r+1+1=j+2=deg((Sj+1))+1=j+1+1=j+2

所以

ϕ ( R j + 1 2 ( j − r + 1 ) S r − 1 ) = ( − 1 ) j − r + 2 [ ϕ ( R j + 1 ) ] j − r d e t p o l ( x j − r + 1 ϕ ( S j ) , … , x ϕ ( S j ) , ϕ ( S j ) , ϕ ( S j + 1 ) ) {\phi\left( R_{j + 1}^{2(j - r + 1)}S_{r-1} \right) }{= ( - 1)^{j - r + 2}\left\lbrack \phi\left( R_{j + 1} \right) \right\rbrack^{j - r}detpol\left( x^{j - r + 1}\phi\left( S_{j} \right),\ldots,x\phi\left( S_{j} \right),\phi\left( S_{j} \right),\phi\left( S_{j + 1} \right) \right) } ϕ(Rj+12(jr+1)Sr1)=(1)jr+2[ϕ(Rj+1)]jrdetpol(xjr+1ϕ(Sj),,xϕ(Sj),ϕ(Sj),ϕ(Sj+1))

ϕ ( − R j + 1 j − r + 2 ) ϕ ( S r − 1 ) = p r e m ( ϕ ( S j ) , ϕ ( S j + 1 ) ) \phi\left( - R_{j + 1}^{j - r + 2} \right)\phi\left( S_{r-1} \right) = prem\left( \phi\left( S_{j} \right),\phi\left( S_{j + 1} \right) \right) ϕ(Rj+1jr+2)ϕ(Sr1)=prem(ϕ(Sj),ϕ(Sj+1))

  • 11
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值