从有理数构造实数

一、从有理数构造实数

下面的叙述中 α 、 β 、 γ \alpha 、 \beta 、 \gamma αβγ代表分划, p 、 q 、 r 、 s 、 p ′ 、 q ′ 、 r ′ 、 s ′ p、q、r、s、p^{'} 、q^{'} 、r^{'} 、s^{'} pqrspqrs都是有理数, R R R代表实数全集, Q Q Q代表有理数全集, Z Z Z代表整数全集, N N N代表正整数全集

1. 分划的定义

设满足下面三个条件的集合 α \alpha α称为分划(注意: p 、 q ∈ Q p、q \in Q pqQ, Q Q Q是有理数全集)

  • α ⊂ Q , α ≠ Q , α ≠ ∅ \alpha \subset Q, \alpha \neq Q, \alpha \neq \varnothing αQ,α=Q,α=(分划是有理数集的非空真子集)

  • p ∈ α ⇒ ∃ q > p , q ∈ α p \in \alpha \Rightarrow \exists q > p,q \in \alpha pαq>p,qα(表明分划中无最大元)

  • p ∈ α , q < p ⇒ q ∈ α p \in \alpha , q < p \Rightarrow q \in \alpha pα,q<pqα (比分划中元素小的有理数在该分划中)

可以得到下面两个有用的结论:

  • p ∈ α , q ∉ α ⇒ p < q p \in \alpha ,q \not\in\alpha \Rightarrow p < q pα,qαp<q

  • p ∉ α , p < q ⇒ q ∉ α p \not\in\alpha ,p < q \Rightarrow q \not\in\alpha pα,p<qqα

2. 分划的全集是具有最小上界性的有序集

2.1 规定分划的有序关系为

  • α ⊊ β ⇔ α < β \alpha \subsetneq \beta \Leftrightarrow \alpha < \beta αβα<β(分划满足传递性)
  • α = β ⇔ α = β \alpha = \beta \Leftrightarrow \alpha = \beta α=βα=β(第一个等号是集合关系,第二个等号是有序关系)

2.2 分划的全集 R R R是有序集

  • 分划满足下面三种关系的一个(注意: α 、 β 、 γ \alpha 、 \beta 、 \gamma αβγ代表分划)
    α < β α = β α > β \alpha < \beta \qquad \alpha = \beta \qquad \alpha > \beta α<βα=βα>β

    三种关系最多满足一个。首先分划必满足三种关系中的一个。若前两个( α < β 、 α = β \alpha < \beta 、 \alpha = \beta α<βα=β)中一个满足,则前述成立;若前两个不成立,则 ∃ p ∈ α , p ∉ β ⇒ ∀ q ∈ β , q < p ⇒ β ⊊ α ⇒ α > β \exists p \in \alpha ,p \not\in\beta \Rightarrow \forall q \in \beta ,q < p \Rightarrow \beta \subsetneq \alpha \Rightarrow \alpha > \beta pα,pβqβ,q<pβαα>β

2.3 分划组成的有序全集 R R R具有最小上界性

最小上界性即 R ′ ⊂ R , ∀ α ∈ R ′ , ∃ β ∈ R , α < β ⇒ ∃ sup ⁡ ( R ′ ) ∈ R R^{'} \subset R, \forall \alpha \in R^{'} , \exists \beta \in R, \alpha < \beta \Rightarrow \exists \sup (R^{'}) \in R RR,αR,βR,α<βsup(R)R

γ = { p ∣ p ∈ α , α ∈ R ′ } \gamma = \{ p|p \in \alpha, \alpha \in R^{'} \} γ={ppα,αR}

  • γ \gamma γ是分划,即 γ ∈ R \gamma \in R γR

    • γ ≠ ∅ \gamma \neq \varnothing γ=
    • ∃ q ∈ β , q ∉ γ ⇒ γ ≠ Q \exists q \in \beta ,q \not\in\gamma \Rightarrow \gamma \neq Q qβ,qγγ=Q
  • γ = sup ⁡ ( R ′ ) \gamma = \sup (R^{'}) γ=sup(R)

    • ∀ α ∈ R ′ , α ⊂ γ ⇒ α ⩽ γ \forall \alpha \in R^{'} , \alpha \subset \gamma \Rightarrow \alpha \leqslant \gamma αR,αγαγ,即 S S S R ′ R^{'} R的上界。

    • 对于 γ ′ < γ ⇒ ∃ r ∈ γ , r ∉ γ ′ ⇒ ∀ r ′ ∈ γ ′ , r > r ′ ⇒ ∃ α ⊆ R ′ , r ∈ α , α > γ ′ ⇒ ∃ α ⊆ R ′ , γ ′ < α ⩽ γ \gamma^{'} < \gamma \Rightarrow \exists r \in \gamma ,r \not\in \gamma^{'} \Rightarrow \forall r^{'} \in \gamma^{'} ,r > r^{'} \Rightarrow \exists \alpha \subseteq R^{'} ,r \in \alpha , \alpha > \gamma^{'} \Rightarrow \exists \alpha \subseteq R^{'} ,\gamma^{'} < \alpha \leqslant \gamma γ<γrγ,rγrγ,r>rαR,rα,α>γαR,γ<αγ,即 γ ′ \gamma^{'} γ不是 R ′ R^{'} R的上界

3. 分划的加法满足加法公理

3.1 规定分划的加法为

α + β = { p + q ∣ p ∈ α , q ∈ β } \alpha + \beta = \{ p + q|p \in \alpha ,q \in \beta \} α+β={p+qpα,qβ}

3.2 分别证明分划加法满足五条加法公理

  • 加法封闭,即证 α + β \alpha + \beta α+β是分划

    • p ∈ α 、 q ∈ β p \in \alpha 、q \in \beta pαqβ,则 p + q ∈ α + β p + q \in \alpha + \beta p+qα+β,即 α + β ≠ ∅ \alpha + \beta \neq \varnothing α+β=。设 p ′ ∉ α 、 q ′ ∉ β p^{'} \not\in\alpha 、q^{'} \not\in\beta pαqβ,则 ∀ p ∈ α , p ′ > p , ∀ q < α , q ′ > q ⇒ ∀ p ∈ α 、 q ∈ β , p + q < p ′ + q ′ ⇒ p ′ + q ′ ∉ α + β \forall p \in \alpha ,p^{'} > p, \forall q < \alpha ,q^{'} > q \Rightarrow \forall p \in \alpha 、q \in \beta ,p + q < p^{'} + q^{'} \Rightarrow p^{'} + q^{'} \not\in\alpha + \beta pα,p>p,q<α,q>qpαqβ,p+q<p+qp+qα+β,即 α + β ≠ Q \alpha + \beta \neq Q α+β=Q。(非空真子集)

    • p + q ∈ α + β p + q \in \alpha + \beta p+qα+β,则 ∃ p ∈ α 、 q ∈ β \exists p \in \alpha 、q \in \beta pαqβ,另外 ∃ p ′ ∈ α , p ′ > p , ∃ q ′ ∈ β , q ′ > q ⇒ p ′ + q ′ ∈ α + β \exists p^{'} \in \alpha ,p^{'} > p, \exists q^{'} \in \beta ,q^{'} > q \Rightarrow p^{'} + q^{'} \in \alpha + \beta pα,p>p,qβ,q>qp+qα+β, p + q < p ′ + q ′ p + q < p^{'} + q^{'} p+q<p+q。(无最大元)

    • r = p + q ∈ α + β r = p + q \in \alpha + \beta r=p+qα+β,则 ∃ p ∈ α 、 q ∈ β \exists p \in \alpha 、q \in \beta pαqβ,另设 r ′ < r , r ′ = r − ( r − r ′ ) = p + q − ( r − r ′ ) , p ′ = p , q ′ = q − ( r − r ′ ) < q r' < r,r^{'} = r - (r - r^{'}) = p + q - (r - r^{'}) ,p^{'} = p,q^{'} = q - (r - r^{'}) < q r<r,r=r(rr)=p+q(rr),p=p,q=q(rr)<q,那么 p ′ ∈ α , q ′ ∈ β , r ′ = p ′ + q ′ ∈ α + β p^{'} \in \alpha ,q^{'} \in \beta ,r^{'} = p^{'} + q^{'} \in \alpha + \beta pα,qβ,r=p+qα+β。(比分划中元素小的有理数在该分划中)

  • 加法交换律,显然成立

  • 加法结合律,显然成立

  • 加法存在零元,规定 0 ∗ = { p ∣ p ∈ Q , p < 0 } 0^{\ast} = \{ p|p \in Q,p < 0 \} 0={ppQ,p<0},下面证明 0 ∗ 0^{\ast} 0为零元
    p ∈ α 、 q ∈ 0 ∗ p \in \alpha 、q \in 0^{\ast} pαq0,则 q < 0 , p + q < p ⇒ p + q ∈ α q < 0,p + q < p \Rightarrow p + q \in \alpha q<0,p+q<pp+qα,即 α + 0 ∗ ⊆ α \alpha + 0^{\ast} \subseteq \alpha α+0α

    对于 p ∈ α p \in \alpha pα ∃ r ∈ α , r > p \exists r \in \alpha ,r > p rα,r>p,那么 p − r < 0 ⇒ p − r ∈ 0 ∗ p - r < 0 \Rightarrow p - r \in 0^{\ast} pr<0pr0,还有 p = ( p − r ) + r p = (p - r) + r p=(pr)+r。综合前述三条,可得 α ⊆ α + 0 ∗ \alpha \subseteq \alpha + 0^{\ast} αα+0,即 α = α + 0 ∗ \alpha = \alpha + 0^{\ast} α=α+0

  • 加法存在逆元,设 α ′ = { p ∣ ∃ r > 0 , − p − r ∉ α } \alpha^{'} = \{ p| \exists r > 0,- p - r \not\in\alpha \} α={p∣∃r>0,prα},下面证明分划 α \alpha α的逆元为 α ′ \alpha^{'} α

  • 先证 α ′ \alpha^{'} α为分划

    • q ∉ α , q \not\in\alpha , qα, q + 1 ∉ α q + 1 \not\in\alpha q+1α,令 p = − q − 1 , r = 1 p = - q - 1,r = 1 p=q1,r=1,则 − p − r = q ∉ α ⇒ p ∈ α ′ - p - r = q \not\in\alpha \Rightarrow p \in \alpha^{'} pr=qαpα,即 α ′ \alpha^{'} α不为空;设 q ∈ α q \in \alpha qα,则 q ∈ α q \in \alpha qα,令 p = − q p = - q p=q,则 ∀ r > 0 , − p − r = q − r < q ⇒ − p − r ∈ α ′ \forall r > 0,- p - r = q - r < q \Rightarrow - p - r \in \alpha^{'} r>0,pr=qr<qprα,即 − p − r ∉ α ′ - p - r \not\in \alpha^{'} prα α ′ \alpha^{'} α是Q的真子集(非空真子集)

    • p ∈ α ′ ⇒ ∃ r > 0 , − p − r ∉ α p \in \alpha^{'} \Rightarrow \exists r > 0,- p - r \not\in \alpha pαr>0,prα,将 r r r分成两个 r 2 \frac{r}{2} 2r,令 p ′ = p + r 2 、 r ′ = r 2 p^{'} = p + \frac{r}{2} 、r^{'} = \frac{r}{2} p=p+2rr=2r,那么 − p ′ − r ′ = − p − r ∉ α ⇒ p ′ ∈ α ′ - p^{'} - r^{'} = - p - r \not\in\alpha \Rightarrow p^{'} \in \alpha^{'} pr=prαpα,也就是说 p ∈ α ′ ⇒ ∃ p ′ ∈ α ′ , p ′ > p 。 p \in \alpha^{'} \Rightarrow \exists p^{'} \in \alpha^{'} ,p^{'} > p。 pαpα,p>p(无最大元)

    • p ∈ α ′ ⇒ ∃ r > 0 , − p − r ∉ α p \in \alpha^{'} \Rightarrow \exists r > 0,- p - r \not\in \alpha pαr>0,prα,设 q < p q < p q<p,那么 − q − r > − p − r - q - r > - p - r qr>pr可得 − q − r ∉ α - q - r \not\in \alpha qrα,即 q ∈ α ′ q \in \alpha^{'} qα(比分划中元素小的有理数在该分划中)

  • 再证 α ′ \alpha^{'} α α \alpha α的逆元,即 α ′ + α = 0 ∗ \alpha^{'} + \alpha = 0^{\ast} α+α=0

    • α ′ + α ⊆ 0 ∗ \alpha^{'} + \alpha \subseteq 0^{\ast} α+α0

      p ∈ α ′ ⇒ ∃ r > 0 , − p − r ∉ α p \in \alpha^{'} \Rightarrow \exists r > 0,- p - r \not\in \alpha pαr>0,prα,再设 q ∈ α q \in \alpha qα,那么 − p − r > q ⇒ p + q < − r < 0 ⇒ p + q ∈ 0 ∗ - p - r > q \Rightarrow p + q < - r < 0 \Rightarrow p + q \in 0^{\ast} pr>qp+q<r<0p+q0

    • 0 ∗ ⊆ α ′ + α 0^{\ast} \subseteq \alpha^{'} + \alpha 0α+α

      w ∈ 0 ∗ , v = − w 2 w \in 0^{\ast} ,v = - \frac{w}{2} w0,v=2w。由有理数的阿基米德性可知, ∃ n ∈ Z , n v ∈ α , ( n + 1 ) v ∉ α \exists n \in Z,nv \in \alpha , (n + 1) v \not\in\alpha nZ,nvα,(n+1)vα。令 p = n v 、 q = − n v 、 r = v p = nv、q = - nv、r = v p=nvq=nvr=v可得 p ∈ α , − q − r = n v + v ∉ α ⇒ q ∈ α ′ p \in \alpha ,- q - r = nv + v \not\in\alpha \Rightarrow q \in \alpha^{'} pα,qr=nv+vαqα,而且 p + q = − 2 v = w ∈ 0 ∗ p + q = - 2 v = w \in 0^{\ast} p+q=2v=w0

4. 加法有序: β < γ ⇒ α + β < α + γ \beta < \gamma \Rightarrow \alpha + \beta < \alpha + \gamma β<γα+β<α+γ

由加法的定义显然有 α + β ⊂ α + γ \alpha + \beta \subset \alpha + \gamma α+βα+γ。若 α + β = α + γ \alpha + \beta = \alpha + \gamma α+β=α+γ,利用消去律(加法存在逆元)可得 β = γ \beta = \gamma β=γ,矛盾。

由此证明还可得到一个有用的结论: α < 0 ∗ ⇒ α + 0 ∗ < α + ( − α ) ⇒ − α > 0 ∗ \alpha < 0^{\ast} \Rightarrow \alpha + 0^{\ast} < \alpha + (- \alpha) \Rightarrow - \alpha > 0^{\ast} α<0α+0<α+(α)α>0

5. 分划的乘法法满足乘法公理

5.1 首先限定乘法为在 R R R的子集 R ∗ R^{\ast} R上的运算

规定 α β = { r ∣ r ⩽ p q , p ∈ α , p > 0 , q ∈ β , q > 0 , α 、 β ∈ R ∗ } \alpha \beta = \{ r|r \leqslant pq,p \in \alpha ,p > 0,q \in \beta ,q > 0, \alpha 、 \beta \in R^{\ast} \} αβ={rrpq,pα,p>0,qβ,q>0,αβR},其中 R ∗ = { α ∣ α ∈ R , α > 0 ∗ } R^{\ast} = \{ \alpha | \alpha \in R, \alpha > 0^{\ast} \} R={ααR,α>0}

  • 乘法在 R ∗ R^{\ast} R上封闭,下面证明 α β \alpha \beta αβ是分划

    • p ∈ α 、 q ∈ β 、 p > 0 、 q > 0 p \in \alpha 、q \in \beta 、p > 0、q > 0 pαqβp>0q>0,则 p q ∈ α β pq \in \alpha \beta pqαβ,即 r = α β ≠ ∅ r = \alpha \beta \neq \varnothing r=αβ=

      p ′ ∉ α 、 q ′ ∉ β p^{'} \not\in\alpha 、q^{'} \not\in\beta pαqβ,则 ∀ p ∈ α , p ′ > p , ∀ q < α , q ′ > q ⇒ ∀ p ∈ α 、 q ∈ β , p q < p ′ q ′ ⇒ r ′ = p ′ q ′ ∉ α β \forall p \in \alpha ,p^{'} > p, \forall q < \alpha ,q^{'} > q \Rightarrow \forall p \in \alpha 、q \in \beta ,pq < p^{'} q^{'} \Rightarrow r^{'} = p^{'} q^{'} \not\in\alpha \beta pα,p>p,q<α,q>qpαqβ,pq<pqr=pqαβ,即 α β ≠ Q \alpha \beta \neq Q αβ=Q。(非空真子集)

    • r ∈ α β r \in \alpha \beta rαβ,则 ∃ p ∈ α 、 q ∈ β 、 p > 0 、 q > 0 , r ⩽ p q \exists p \in \alpha 、q \in \beta 、p > 0、q > 0,r \leqslant pq pαqβp>0q>0,rpq,另外 ∃ p ′ ∈ α , p ′ > p , ∃ q ′ ∈ β , q ′ > q \exists p^{'} \in \alpha ,p^{'} > p, \exists q^{'} \in \beta ,q^{'} > q pα,p>p,qβ,q>q,令 r ′ = p ′ q ′ ∈ α β r^{'} = p^{'} q^{'} \in \alpha \beta r=pqαβ, r ⩽ p q < p ′ q ′ = r ′ r \leqslant pq < p^{'} q^{'} = r^{'} rpq<pq=r。(无最大元)

    • r ∈ α β r \in \alpha \beta rαβ,则 ∃ p ∈ α 、 q ∈ β 、 p > 0 、 q > 0 , r ⩽ p q \exists p \in \alpha 、q \in \beta 、p > 0、q > 0,r \leqslant pq pαqβp>0q>0,rpq,另设 r ′ < r , r ′ < r r ′ r ⩽ p q r ′ r r' < r,r^{'} < r \frac{r^{'}}{r} \leqslant pq \frac{r^{'}}{r} r<r,r<rrrpqrr,令 p ′ = p , q ′ = q r ′ r < q p^{'} = p,q^{'} = q \frac{r^{'}}{r} < q p=p,q=qrr<q那么 p ′ ∈ α , q ′ ∈ β , p ′ > 0 、 q ′ > 0 , r ′ < p ′ q ′ ∈ α β p^{'} \in \alpha ,q^{'} \in \beta ,p^{'} > 0、q^{'} > 0,r^{'} < p^{'} q^{'} \in \alpha \beta pα,qβ,p>0q>0,r<pqαβ。(比分划中元素小的有理数在该分划中)

  • 乘法交换律,显然成立。

  • 乘法结合律,显然成立。

  • 乘法存在单位元,规定 1 ∗ = { p ∣ p < 1 } 1^{\ast} = \{ p|p < 1 \} 1={pp<1} 1 ∗ 1^{\ast} 1显然是个分划,下面证明 1 ∗ 1^{\ast} 1是单位元。

    • 1 ∗ α ⊆ α 1^{\ast} \alpha \subseteq \alpha 1αα

      r ∈ 1 ∗ α r \in 1^{\ast} \alpha r1α,则
      ∃ p ∈ α 、 q ∈ 1 ∗ 、 p > 0 、 q > 0 , r ⩽ p q \exists p \in \alpha 、q \in 1^{\ast} 、p > 0、q > 0,r \leqslant pq pαq1p>0q>0,rpq

      显然 p q < p ⇒ r < p ⇒ r ∈ α pq < p \Rightarrow r < p \Rightarrow r \in \alpha pq<pr<prα,即 1 ∗ α ⊆ α 1^{\ast} \alpha \subseteq \alpha 1αα

    • α ⊆ 1 ∗ α \alpha \subseteq 1^{\ast} \alpha α1α

      p ∈ α 、 p > 0 p \in \alpha 、p > 0 pαp>0,那么 ∃ p ′ > p , p ′ ∈ α \exists p^{'} > p,p^{'} \in \alpha p>p,pα,于是 p = p ′ p p ′ p = p^{'} \frac{p}{p^{'}} p=ppp,显然 p p ′ < 1 ⇒ p p ′ ∈ 1 ∗ \frac{p}{p^{'}} < 1 \Rightarrow \frac{p}{p^{'}} \in 1^{\ast} pp<1pp1,即 p = p ′ p p ′ ∈ 1 ∗ α p = p^{'} \frac{p}{p^{'}} \in 1^{\ast} \alpha p=ppp1α,故 α ⊆ 1 ∗ α \alpha \subseteq 1^{\ast} \alpha α1α

  • 乘法存在逆元,设 α ′ = { s ∣ s ⩽ p , p > 0 , ∃ r > 0 , 1 p + r ∉ α } \alpha^{'} = \left\{ s|s \leqslant p,p > 0, \exists r > 0, \frac{1}{p + r} \not\in\alpha \right\} α={ssp,p>0,r>0,p+r1α},下面证明 α ′ \alpha^{'} α α \alpha^{} α的逆元。

    • 先证明 α ′ \alpha^{'} α是分划

      • q ∉ α ⇒ q + 1 ∉ α q \not\in\alpha \Rightarrow q + 1 \not\in\alpha qαq+1α,显然有 q > 0 q > 0 q>0,再设
        p = 1 q + 1 , r = 1 q − 1 q + 1 > 0 ⇒ 1 p + r = q ∉ α p = \frac{1}{q + 1} ,r = \frac{1}{q} - \frac{1}{q + 1} > 0 \Rightarrow \frac{1}{p + r} = q \not\in\alpha p=q+11,r=q1q+11>0p+r1=qα

        p = 1 q ∈ α ′ ⇒ α ′ ≠ ∅ p = \frac{1}{q} \in \alpha^{'} \Rightarrow \alpha^{'} \neq \varnothing p=q1αα= ^{}

        q ∈ α , q > 0 , p ′ = 1 q q \in \alpha ,q > 0,p^{'} = \frac{1}{q} qα,q>0,p=q1,那么
        ∀ p ⩾ p ′ , ∀ r > 0 , 1 p + r ⩽ 1 p ′ + r < 1 p ′ = q ∈ α \forall p \geqslant p^{'} , \forall r > 0, \frac{1}{p + r} \leqslant \frac{1}{p' + r} < \frac{1}{p'} = q \in \alpha pp,r>0,p+r1p+r1<p1=qα

        ∀ p ⩾ p ′ ∉ α ′ \forall p \geqslant p^{'} \not\in\alpha^{'} ppα。(非空真子集)

      • s ∈ α ′ s \in \alpha^{'} sα,那么

        ∃ p > 0 , s ⩽ p , ∃ r > 0 , 1 p + r ∉ α \exists p > 0,s \leqslant p, \exists r > 0, \frac{1}{p + r} \not\in\alpha p>0,sp,r>0,p+r1α

        p ′ = p + r 2 , r ′ = 1 2 r ⇒ 1 p ′ + r ′ = 1 p + r ∉ α p^{'} = p + \frac{r}{2} ,r^{'} = \frac{1}{2} r \Rightarrow \frac{1}{p^{'} + r^{'}} = \frac{1}{p + r} \not\in\alpha p=p+2r,r=21rp+r1=p+r1α

        s ⩽ p < p ′ = p + r 2 ∈ α ′ s \leqslant p < p^{'} = p + \frac{r}{2} \in \alpha^{'} sp<p=p+2rα。(无最大元)

      • s ′ < r ⇒ s ′ < p s' < r \Rightarrow s' < p s<rs<p,即 r ′ ∈ α ′ r' \in \alpha^{'} rα,(比分划中元素小的有理数在该分划中)

    • 再证 α ′ \alpha^{'} α是逆元,即 α ′ α = 1 ∗ \alpha^{'} \alpha = 1^{\ast} αα=1

      • α ′ α ⊆ 1 ∗ \alpha^{'} \alpha \subseteq 1^{\ast} αα1

        s ′ ∈ α ′ , s ′ > 0 s^{'} \in \alpha^{'} ,s^{'} > 0 sα,s>0,那么

        ∃ p > 0 , s ′ ⩽ p , ∃ r > 0 , 1 p + r ∉ α \exists p > 0,s^{'} \leqslant p, \exists r > 0, \frac{1}{p + r} \not\in\alpha p>0,sp,r>0,p+r1α

        再设 s ∈ α , s > 0 s \in \alpha ,s > 0 sα,s>0,那么
        1 p + r > s ⇒ s p + s r < 1 ⇒ s s ′ ⩽ s p < s p + s r < 1 \frac{1}{p + r} > s \Rightarrow sp + sr < 1 \Rightarrow ss' \leqslant sp < sp + sr < 1 p+r1>ssp+sr<1sssp<sp+sr<1

        α ′ α ⊆ 1 ∗ \alpha^{'} \alpha \subseteq 1^{\ast} αα1

      • 1 ∗ ⊆ α ′ α 1^{\ast} \subseteq \alpha^{'} \alpha 1αα

        w ∈ 1 ∗ , v = 1 + w 2 w \in 1^{\ast} ,v^{} = \frac{1 + w}{2} w1,v=21+w,显然有 0 < w < v 2 < 1 < v − 1 0 < w < v^2 < 1 < v^{- 1} 0<w<v2<1<v1。由于

        α > 0 ∗ ⇒ ∃ p ∈ α , q ∉ α , 0 < p < q \alpha > 0^{\ast} \Rightarrow \exists p \in \alpha ,q \not\in\alpha ,0 < p < q α>0pα,qα,0<p<q

        结合有理数的阿基米德性,必然有

        ∃ n ∈ N ∗ , n p ( v − 1 − 1 ) v > q − p ⇒ p n p ( v − 1 − 1 ) > q ⇒ p [ 1 + n ( v − 1 − 1 ) ] > q \exists n \in N^{\ast} ,np (v^{- 1} - 1) v > q - p \Rightarrow pnp (v^{- 1} - 1) > q \Rightarrow p [1 + n (v^{- 1} - 1)] > q nN,np(v11)v>qppnp(v11)>qp[1+n(v11)]>q

        由伯努利不等式可得

        [ 1 + ( v − 1 − 1 ) ] n > 1 + n ( v − 1 − 1 ) [1 + (v^{- 1} - 1)]^n > 1 + n (v^{- 1} - 1) [1+(v11)]n>1+n(v11)

        ⇒ p v − n > p [ 1 + n ( v − 1 − 1 ) ] > q \Rightarrow pv^{- n} > p [1 + n (v^{- 1} - 1)] > q pvn>p[1+n(v11)]>q

        ⇒ 0 < p < q < p v − n ∉ α \Rightarrow 0 < p < q < pv^{- n} \not\in\alpha 0<p<q<pvnα

        通过数学归纳法可知,必然有

        ∃ 0 ⩽ m < n , p v − m ∈ α , p v − m − 1 ∉ α , p v − m − 2 ∉ α \exists 0 \leqslant m < n,pv^{- m} \in \alpha ,pv^{- m - 1} \not\in\alpha ,pv^{- m - 2} \not\in\alpha ∃0m<n,pvmα,pvm1α,pvm2α

        p ′ = p − 1 v m + 2 , r = p − 1 v m + 1 − p − 1 v m + 2 > 0 p^{'} = p^{- 1} v^{m + 2} ,r = p^{- 1} v^{m + 1} - p^{- 1} v^{m + 2} > 0 p=p1vm+2,r=p1vm+1p1vm+2>0,那么

        1 p ′ + r = p v − m − 1 ∉ α ⇒ p ′ = p − 1 v m + 2 ∈ α ′ ⇒ p ′ ( p v − m ) = v 2 ∈ α ′ α \frac{1}{p^{'} + r} = pv^{- m - 1} \not\in\alpha \Rightarrow p^{'} = p^{- 1} v^{m + 2} \in \alpha^{'} \Rightarrow p^{'} (pv^{- m }) = v^2 \in \alpha^{'} \alpha p+r1=pvm1αp=p1vm+2αp(pvm)=v2αα

        w < v 2 w < v^2 w<v2,由分划的特性可得 w ∈ α ′ α w \in \alpha^{'} \alpha wαα

注意:下面记 α \alpha^{} α的逆元为 1 α \frac{1}{\alpha} α1

5.2 规定 0 ∗ α = α 0 ∗ = 0 ∗ 0^{\ast} \alpha = \alpha 0^{\ast} = 0^{\ast} 0α=α0=0,其中 α ∈ R ∗ \alpha \in R^{\ast} αR

下面证明 R ∗ ∪ { 0 ∗ } R^{\ast} \cup \{ 0^{\ast} \} R{0}仍然满足乘法公理(2-1)乘法封闭,显然成立

  • 乘法交换律,显然成立
  • 乘法结合律,显然成立
  • 乘法存在单位元, 1 ∗ × 0 ∗ = 0 ∗ 1^{\ast} \times 0^{\ast} = 0^{\ast} 1×0=0,显然成立
  • 0 ∗ 0^{\ast} 0不需要有逆元

5.3 负数参与的乘法运算

α < 0 ∗ \alpha < 0^{\ast} α<0时,称 α \alpha α为负数,规定当参与乘法运算的实数含有负数时,运算方式如下

α β = { ( − α ) ( − β ) α < 0 ∗ , β < 0 ∗ − [ ( − α ) β ] α < 0 ∗ , β > 0 ∗ − [ α ( − β ) ] α > 0 ∗ , β < 0 ∗   \alpha\beta = \left\{ \begin{matrix} ( - \alpha)( - \beta) & \alpha < 0^{*},\beta < 0^{*} \\ -\left\lbrack ( - \alpha)\beta \right\rbrack & \alpha < 0^{*},\beta > 0^{*} \\ -\left\lbrack \alpha( - \beta) \right\rbrack & \alpha > 0^{*},\beta < 0^{*} \end{matrix} \right.\ αβ= (α)(β)[(α)β][α(β)]α<0,β<0α<0,β>0α>0,β<0 

  • 乘法封闭,显然成立

  • 乘法交换律,显然成立

  • 乘法结合律,显然成立

  • 乘法存在单位元,显然成立

  • 乘法存在逆元,负数 α \alpha α逆元是 1 α = − 1 − α \frac{1}{\alpha} = - \frac{1}{- \alpha} α1=α1,因为
    α ( − 1 − α ) = ( − a ) ( 1 − α ) = 1 ∗ \alpha \left( - \frac{1}{- \alpha} \right) = (- a) \left( \frac{1}{- \alpha} \right) = 1^{\ast} α(α1)=(a)(α1)=1

6. 分划的加法运算和乘法运算满足分配律

  • 首先 R ∗ R^{\ast} R上的运算满足分配律

    • r > 0 , r ∈ α + β ⇒ ∃ p > 0 , p ∈ α , ∃ q > 0 , q ∈ β , p + q = r r > 0,r \in \alpha + \beta \Rightarrow \exists p > 0,p \in \alpha , \exists q > 0,q \in \beta ,p + q = r r>0,rα+βp>0,pα,q>0,qβ,p+q=r
      因为 r ∈ α + β ⇒ ∃ p ′ ∈ α , ∃ q ′ ∈ β , p ′ + q ′ = r r \in \alpha + \beta \Rightarrow \exists p^{'} \in \alpha , \exists q^{'} \in \beta ,p^{'} + q^{'} = r rα+βpα,qβ,p+q=r,又因为 r > 0 r > 0 r>0,故而 p ′ 、 q ′ p^{'} 、q^{'} pq中必至少有一个为正有理数,不妨假定 p ′ > 0 , p ′ > q ′ p^{'} > 0, p^{'} > q^{'} p>0,p>q。设 q ′ ′ ∈ β ′ , q ′ ′ > 0 q^{''} \in \beta ^{'}, q^{''} >0 q′′β,q′′>0,另外 r ′ = min ⁡ { q ′ ′ , r 2 } r^{'} = \min \left\{ {q^{''}}, \frac{r}{2} \right\} r=min{q′′,2r},令 p = p ′ + q ′ − r ′ , q = r ′ ⇒ p > 0 , q > 0 ⇒ p + q = p ′ + q ′ = r p = p^{'} + q^{'} - r^{'} ,q = r^{'} \Rightarrow p > 0,q > 0 \Rightarrow p + q = p^{'} + q^{'} = r p=p+qr,q=rp>0,q>0p+q=p+q=r

    • α 、 β 、 γ ∈ R ∗ , γ ( α + β ) = γ α + γ β \alpha 、 \beta 、 \gamma \in R^{\ast} , \gamma (\alpha + \beta) = \gamma \alpha + \gamma \beta αβγR,γ(α+β)=γα+γβ

      • γ ( α + β ) ⊆ γ α + γ β \gamma (\alpha + \beta) \subseteq \gamma \alpha + \gamma \beta γ(α+β)γα+γβ
        s ∈ γ ( α + β ) ⇒ ∃ s ′ > 0 , s = r r ′ , r ∈ γ , r > 0 , r ′ ∈ α + β ⇒ ∃ p > 0 , p ∈ α , ∃ q > 0 , q ∈ β , p + q = r ⇒ s = r ( p + q ) = r p + r q ⇒ s ∈ γ α + γ β ⇒ γ ( α + β ) ∈ γ α + γ β s \in \gamma (\alpha + \beta) \Rightarrow \exists s^{'} > 0,s = rr^{'} ,r \in \gamma ,r > 0,r^{'} \in \alpha + \beta \Rightarrow \exists p > 0,p \in \alpha , \exists q > 0,q \in \beta ,p + q = r \Rightarrow s = r (p + q) = rp + rq \Rightarrow s \in \gamma \alpha + \gamma \beta \Rightarrow \gamma (\alpha + \beta) \in \gamma \alpha + \gamma \beta sγ(α+β)s>0,s=rr,rγ,r>0,rα+βp>0,pα,q>0,qβ,p+q=rs=r(p+q)=rp+rqsγα+γβγ(α+β)γα+γβ

      • γ α + γ β ⊆ γ ( α + β ) \gamma \alpha + \gamma \beta \subseteq \gamma (\alpha + \beta) γα+γβγ(α+β)

        s ∈ γ α + γ β ⇒ ∃ p > 0 , p ∈ γ α , ∃ q > 0 , q ∈ γ β , p + q = s ⇒ ∃ r 1 > 0 , r 1 ∈ γ , ∃ r 2 > 0 , r 2 ∈ γ , p r 1 ∈ α , q r 2 ∈ β s \in \gamma\alpha + \gamma\beta \Rightarrow \exists p > 0,p \in \gamma\alpha,\exists q > 0,q \in \gamma\beta,p + q = s \Rightarrow \exists r_{1} > 0,r_{1} \in \gamma,\exists r_{2} > 0,r_{2} \in \gamma,\frac{p}{r_{1}} \in \alpha,\frac{q}{r_{2}} \in \beta sγα+γβp>0,pγα,q>0,qγβ,p+q=sr1>0,r1γ,r2>0,r2γ,r1pα,r2qβ

        r = m a x { r 1 , r 2 } r = {max}\left\{ r_{1},r_{2} \right\} r=max{r1,r2},那么有

        s ∈ γ α + γ β ⇒ p r ∈ α , q r ∈ β ⇒ s = p + q = r ( p r + q r ) = r ( p + q r ) ⇒ γ α + γ β ⊆ γ ( α + β ) s \in \gamma\alpha + \gamma\beta \Rightarrow \frac{p}{r} \in \alpha,\frac{q}{r} \in \beta \Rightarrow s = p + q = r\left( \frac{p}{r} + \frac{q}{r} \right) = r\left( \frac{p + q}{r} \right) \Rightarrow \gamma\alpha + \gamma\beta \subseteq \gamma(\alpha + \beta) sγα+γβrpα,rqβs=p+q=r(rp+rq)=r(rp+q)γα+γβγ(α+β)

  • R ∗ ∪ { 0 ∗ } R^{\ast} \cup \{ 0^{\ast} \} R{0}满足分配律,显然成立

  • α 、 β 、 γ ∈ R , γ ( α + β ) = γ β + γ α \alpha 、 \beta 、 \gamma \in R, \gamma (\alpha + \beta) = \gamma \beta + \gamma \alpha αβγR,γ(α+β)=γβ+γα

    • 0 ∗ 0^{\ast} 0参与运算时,分配律显然成立

    • γ > 0 ∗ , α > 0 ∗ , β < 0 ∗ , α + β > 0 ∗ \gamma > 0^{\ast} , \alpha > 0^{\ast} , \beta < 0^{\ast} , \alpha + \beta > 0^{\ast} γ>0,α>0,β<0,α+β>0
      原分配律即证 γ ( α + β ) − γ β = γ α \gamma (\alpha + \beta) - \gamma \beta = \gamma \alpha γ(α+β)γβ=γα也就是 γ ( α + β ) + γ ( − β ) = γ α \gamma (\alpha + \beta) + \gamma (- \beta) = \gamma \alpha γ(α+β)+γ(β)=γα,由 R ∗ R^{\ast} R上的分配律可知显然成立

    • γ > 0 ∗ , α > 0 ∗ , β < 0 ∗ , α + β < 0 ∗ \gamma > 0^{\ast} , \alpha > 0^{\ast} , \beta < 0^{\ast} , \alpha + \beta < 0^{\ast} γ>0,α>0,β<0,α+β<0
      原分配律即 γ ( α + β ) = − γ [ − ( α + β ) ] = − γ [ ( − α ) + ( − β ) ] = γ β + γ α \gamma (\alpha + \beta) = - \gamma [- (\alpha + \beta)] = - \gamma [(- \alpha) + (- \beta)] = \gamma \beta + \gamma \alpha γ(α+β)=γ[(α+β)]=γ[(α)+(β)]=γβ+γα

    • γ < 0 ∗ \gamma < 0^{\ast} γ<0

      原分配律即 γ ( α + β ) = − [ − γ ( α + β ) ] = − [ ( − γ ) α + ( − γ ) β ] = γ β + γ α \gamma (\alpha + \beta) = - [- \gamma (\alpha + \beta)] = - [(- \gamma) \alpha + (- \gamma) \beta] = \gamma \beta + \gamma \alpha γ(α+β)=[γ(α+β)]=[(γ)α+(γ)β]=γβ+γα

7. 乘法有序: α < β , γ > 0 ∗ ⇒ α γ < β γ \alpha < \beta, \gamma >0^{\ast} \Rightarrow \alpha \gamma < \beta \gamma α<β,γ>0αγ<βγ

由乘法分配律可证明

R R R是具有最小上界性的有序域的证明全部完成

二、有理数的运算结果与在 R R R上一致

定义 r ∈ Q r \in Q rQ R R R上对应 r ∗ = { p ∣ p < r } r^{\ast} = \{ p|p < r \} r={pp<r}

  • r ∗ + s ∗ = ( r + s ) ∗ r^{\ast} + s^{\ast} = (r + s)^{\ast} r+s=(r+s)
    p ∈ r ∗ + s ∗ ⇒ ∃ r ′ < r 、 s ′ < s , p = r ′ + s ′ ⇒ p < r + s ⇒ p ∈ ( r + s ) ∗ ⇒ r ∗ + s ∗ ⊆ ( r + s ) ∗ p \in r^{\ast} + s^{\ast} \Rightarrow \exists r^{'} < r、s^{'} < s,p = r^{'} + s^{'} \Rightarrow p < r + s \Rightarrow p \in (r + s)^{\ast} \Rightarrow r^{\ast} + s^{\ast} \subseteq (r + s)^{\ast} pr+sr<rs<s,p=r+sp<r+sp(r+s)r+s(r+s)

    p ∈ ( r + s ) ∗ ⇒ p < r + s p \in (r + s)^{\ast} \Rightarrow p < r + s p(r+s)p<r+s,令 r ′ = r − r + s − p 2 , s ′ = s − r + s − p 2 r^{'} = r - \frac{r + s - p}{2} ,s^{'} = s - \frac{r + s - p}{2} r=r2r+sp,s=s2r+sp,那么 r ′ ∈ r ∗ , s ′ ∈ s ∗ , r ′ + s ′ = p ⇒ p ∈ r ∗ + s ∗ ⇒ ( r + s ) ∗ ⊆ r ∗ + s ∗ r^{'} \in r^{\ast} ,s^{'} \in s^{\ast}, r^{'} + s^{'} = p \Rightarrow p \in r^{\ast} + s^{\ast} \Rightarrow (r + s)^{\ast} \subseteq r^{\ast} + s^{\ast} rr,ss,r+s=ppr+s(r+s)r+s

  • r ∗ s ∗ = ( r s ) ∗ r^{\ast} s^{\ast} = (rs)^{\ast} rs=(rs)

    • 0 ∗ 0^{\ast} 0参与运算时,显然成立

    • r ∗ > 0 ∗ , s ∗ > 0 ∗ r^{\ast} > 0^{\ast} ,s^{\ast} > 0^{\ast} r>0,s>0

      p ∈ r ∗ s ∗ ⇒ ∃ 0 < r ′ < r 、 0 < s ′ < s , p ⩽ r ′ s ′ ⇒ p < r s ⇒ p ∈ ( r s ) ∗ ⇒ r ∗ s ∗ ⊆ ( r s ) ∗ p \in r^{\ast} s^{\ast} \Rightarrow \exists 0 < r^{'} < r、0 < s^{'} < s,p \leqslant r^{'} s^{'} \Rightarrow p < rs \Rightarrow p \in (rs)^{\ast} \Rightarrow r^{\ast} s^{\ast} \subseteq (rs)^{\ast} prs∃0<r<r0<s<s,prsp<rsp(rs)rs(rs)

      p ∈ ( r s ) ∗ ⇒ p < r s p \in (rs)^{\ast} \Rightarrow p < rs p(rs)p<rs。设 s ′ = p r + s 2 , r ′ = p s ′ ⇒ 0 < r ′ < r 、 0 < s ′ < s ⇒ r ′ ∈ r ∗ , s ′ ∈ s ∗ ⇒ p ⩽ r ′ s ′ ⇒ p ∈ ( r s ) ∗ ⇒ ( r s ) ∗ ⊆ r ∗ s ∗ s^{'} = \frac{\frac{p}{r} + s}{2} ,r^{'} = \frac{p}{s^{'}} \Rightarrow 0 < r^{'} < r、0 < s^{'} < s \Rightarrow r^{'} \in r^{\ast} ,s^{'} \in s^{\ast} \Rightarrow p \leqslant r^{'} s^{'} \Rightarrow p \in (rs)^{\ast} \Rightarrow (rs)^{\ast} \subseteq r^{\ast} s^{\ast} s=2rp+s,r=sp0<r<r0<s<srr,ssprsp(rs)(rs)rs

    • r ∗ = − ( − r ) ∗ r^{\ast} = - (- r)^{\ast} r=(r)
      可通过前面对加法的逆元验证成立

    • r ∗ < 0 ∗ , s ∗ > 0 ∗ r^{\ast} < 0^{\ast} ,s^{\ast} > 0^{\ast} r<0,s>0
      r ∗ s ∗ = [ − ( − r ) ∗ ] s ∗ = − [ ( − r ) ∗ s ∗ ] = − ( − r s ) ∗ = ( r s ) ∗ r^{\ast} s^{\ast} = [- (- r^{})^{\ast} ] s^{\ast} = - [(- r^{})^{\ast} s^{\ast}] = - (- rs)^{\ast} = (rs)^{\ast} rs=[(r)]s=[(r)s]=(rs)=(rs)

    • r ∗ > 0 ∗ , s ∗ < 0 ∗ r^{\ast} > 0^{\ast} ,s^{\ast} < 0^{\ast} r>0,s<0
      由乘法交换律可知显然成立

    • r ∗ < 0 ∗ , s ∗ < 0 ∗ r^{\ast} < 0^{\ast} ,s^{\ast} < 0^{\ast} r<0,s<0
      r ∗ s ∗ = [ − ( − r ) ∗ ] [ − ( − s ) ∗ ] = [ ( − r ) ∗ ( − s ) ∗ ] = ( ( − r ) ∗ ( − s ) ) ∗ = ( r ∗ s ) ∗ r^{\ast} s^{\ast} = [- (- r^{})^{\ast} ] [- (- s^{})^{\ast} ] = [(- r^{})^{\ast} (- s)^{\ast}] = ((-r) * (-s))^{\ast} = (r * s)^{\ast} rs=[(r)][(s)]=[(r)(s)]=((r)(s))=(rs)

    • r ∗ < s ∗ ⇔ r < s r^{\ast} < s^{\ast} \Leftrightarrow r < s r<sr<s
      由真子集的关系以及分划的定义,显然成立

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值