数学分析原理答案——第三章 习题24

【第三章 习题24】

X X X是度量空间

a. 称 X X X中的两个Cauchy序列 { p n } \{ p_{n}\} {pn} { q n } \{ q_{n}\} {qn}是等价的,如果

lim ⁡ n → ∞ d ( p n , q n ) = 0 \lim_{n \rightarrow \infty}{d\left( p_{n},q_{n} \right)} = 0 nlimd(pn,qn)=0

证明这是一个等价关系

b. 设 X ∗ X^{*} X是这样得到的一切等价类的集。如果 P ∈ X ∗ P \in X^{*} PX Q ∈ X ∗ Q \in X^{*} QX { p n } ∈ P \left\{ p_{n} \right\} \in P {pn}P { q n } ∈ Q \left\{ q_{n} \right\} \in Q {qn}Q,定义

Δ ( P , Q ) = lim ⁡ n → ∞ d ( p n , q n ) \mathrm{\Delta}(P,Q) = \lim_{n \rightarrow \infty}{d\left( p_{n},q_{n} \right)} Δ(P,Q)=nlimd(pn,qn)

根据习题23,这个极限是存在的。如果把 { p n } \left\{ p_{n} \right\} {pn} { q n } \{ q_{n}\} {qn}各代以等价序列,试证:数 Δ ( P , Q ) \mathrm{\Delta}(P,Q) Δ(P,Q)不变,从而 Δ \mathrm{\Delta} Δ X ∗ X^{*} X里的距离函数。

c. 证明所得的度量空间 X ∗ X^{*} X是完备的。

d. 对于每个 p ∈ X p \in X pX,有一个各项都是 p p p的Cauchy序列;设 P p P_{p} Pp X ∗ X^{*} X中包含这个序列的成员。证明对于一切 p , q ∈ X p,q \in X p,qX,有

Δ ( P p , P q ) = d ( p , q ) \mathrm{\Delta}\left( P_{p},P_{q} \right) = d(p,q) Δ(Pp,Pq)=d(p,q)

换句话说,由等式 φ ( p ) = P p \varphi(p) = P_{p} φ(p)=Pp确定的映射,是从 X X X X ∗ X^{*} X内的等距映射(亦即保持距离的映射)。

e. 证明 φ ( X ) \varphi(X) φ(X) X ∗ X^{*} X中稠密,并且当 X X X完备时, φ ( X ) = X ∗ \varphi(X) = X^{*} φ(X)=X

【解】

a. 自反性和对称性可根据距离函数 d d d的特性得出,下面证明传递性。

设三个Cauchy序列 { p n } \{ p_{n}\} {pn} { q n } \{ q_{n}\} {qn} { r n } \{ r_{n}\} {rn},其中 { p n } \{ p_{n}\} {pn} { q n } \{ q_{n}\} {qn}是等价的、 { q n } \{ q_{n}\} {qn} { r n } \{ r_{n}\} {rn}是等价的。由于

0 ≤ d ( p n , r n ) ≤ d ( p n , q n ) + d ( q n , r n ) 0 \leq d\left( p_{n},r_{n} \right) \leq d\left( p_{n},q_{n} \right) + d\left( q_{n},r_{n} \right) 0d(pn,rn)d(pn,qn)+d(qn,rn)

所以

0 ≤ lim ⁡ n → ∞ d ( p n , q n ) ≤ lim ⁡ n → ∞ d ( p n , q n ) + lim ⁡ n → ∞ d ( q n , r n ) = 0 0 \leq \lim_{n \rightarrow \infty}{d\left( p_{n},q_{n} \right)} \leq \lim_{n \rightarrow \infty}{d\left( p_{n},q_{n} \right)} + \lim_{n \rightarrow \infty}{d\left( q_{n},r_{n} \right)} = 0 0nlimd(pn,qn)nlimd(pn,qn)+nlimd(qn,rn)=0

也就是说, { p n } \{ p_{n}\} {pn} { r n } \{ r_{n}\} {rn}是等价的,这种关系是传递的。

b. 根据习题23,序列 { d ( p n , q n ) } \left\{ d\left( p_{n},q_{n} \right) \right\} {d(pn,qn)}是实数域上的柯西序列,由于实数域的完备性,所以序列 { d ( p n , q n ) } \left\{ d\left( p_{n},q_{n} \right) \right\} {d(pn,qn)}收敛,也就是说这个极限是存在的。

任取 { p n ∗ } ∈ P \left\{ p_{n}^{*} \right\} \in P {pn}P { q n ∗ } ∈ Q \left\{ q_{n}^{*} \right\} \in Q {qn}Q,根据度量空间的特性

d ( p n ∗ , q n ∗ ) ≤ d ( p n ∗ , p n ) + d ( p n , q n ) + d ( q n , q n ∗ ) d\left( p_{n}^{*},q_{n}^{*} \right) \leq d\left( p_{n}^{*},p_{n} \right) + d\left( p_{n},q_{n} \right) + d\left( q_{n},q_{n}^{*} \right) d(pn,qn)d(pn,pn)+d(pn,qn)+d(qn,qn)

d ( p n , q n ) ≤ d ( p n , p n ∗ ) + d ( p n ∗ , q n ∗ ) + d ( q n ∗ , q n ) d\left( p_{n},q_{n} \right) \leq d\left( p_{n},p_{n}^{*} \right) + d\left( p_{n}^{*},q_{n}^{*} \right) + d\left( q_{n}^{*},q_{n} \right) d(pn,qn)d(pn,pn)+d(pn,qn)+d(qn,qn)

所以

d ( p n , q n ) − d ( p n , p n ∗ ) − d ( q n ∗ , q n ) ≤ d ( p n ∗ , q n ∗ ) ≤ d ( p n ∗ , p n ) + d ( p n , q n ) + d ( q n , q n ∗ ) d\left( p_{n},q_{n} \right) - d\left( p_{n},p_{n}^{*} \right) - d\left( q_{n}^{*},q_{n} \right) \leq d\left( p_{n}^{*},q_{n}^{*} \right) \leq d\left( p_{n}^{*},p_{n} \right) + d\left( p_{n},q_{n} \right) + d\left( q_{n},q_{n}^{*} \right) d(pn,qn)d(pn,pn)d(qn,qn)d(pn,qn)d(pn,pn)+d(pn,qn)+d(qn,qn)

所以

Δ ( P , Q ) − 0 − 0 ≤ lim ⁡ n → ∞ d ( p n ∗ , q n ∗ ) ≤ Δ ( P , Q ) + 0 + 0 \mathrm{\Delta}(P,Q) - 0 - 0 \leq \lim_{n \rightarrow \infty}{d\left( p_{n}^{*},q_{n}^{*} \right)} \leq \mathrm{\Delta}(P,Q) + 0 + 0 Δ(P,Q)00nlimd(pn,qn)Δ(P,Q)+0+0

lim ⁡ n → ∞ d ( p n ∗ , q n ∗ ) = Δ ( P , Q ) \lim_{n \rightarrow \infty}{d\left( p_{n}^{*},q_{n}^{*} \right)} = \mathrm{\Delta}(P,Q) nlimd(pn,qn)=Δ(P,Q)

c. 设 { P n } \left\{ P_{n} \right\} {Pn} X ∗ X^{*} X上的Cauchy序列,

d 1 = 1 2 d_{1} = \frac{1}{2} d1=21

那么必然存在 N 1 N_{1} N1满足

∀ i , j ≥ N 1 [ Δ ( P i , P j ) < d 1 ] \forall i,j \geq N_{1}\left\lbrack \mathrm{\Delta}\left( P_{i},P_{j} \right) < d_{1} \right\rbrack i,jN1[Δ(Pi,Pj)<d1]

P i P_{i} Pi中取代表序列 { p n ( i ) } \left\{ p_{n}^{(i)} \right\} {pn(i)},由于它是Cauchy序列,那么必然存在 N 1 ( i ) N_{1}^{(i)} N1(i)满足

∀ s , t ≥ N 1 ( i ) [ d ( p s ( i ) , p t ( i ) ) < d 1 ] \forall s,t \geq N_{1}^{(i)}\left\lbrack d\left( p_{s}^{(i)},p_{t}^{(i)} \right) < d_{1} \right\rbrack s,tN1(i)[d(ps(i),pt(i))<d1]

p 1 ∗ = p s ( i ) p_{1}^{*} = p_{s}^{(i)} p1=ps(i)

于是这个来源于代表序列 { p n ( i ) } \left\{ p_{n}^{(i)} \right\} {pn(i)}中的点 p 1 ∗ p_{1}^{*} p1满足

∀ k ≥ N 1 , ∃ N 1 ( k ) ∈ N + , ∀ r ≥ N 1 ( k ) [ d ( p 1 ∗ , p r ( k ) ) < 2 d 1 = 1 ] \forall k \geq N_{1},\exists N_{1}^{(k)} \in N^{+},\forall r \geq N_{1}^{(k)}\left\lbrack d\left( p_{1}^{*},p_{r}^{(k)} \right) < 2d_{1} = 1 \right\rbrack kN1,N1(k)N+,rN1(k)[d(p1,pr(k))<2d1=1]

其中 { p n ( k ) } \left\{ p_{n}^{(k)} \right\} {pn(k)} P k P_{k} Pk中的代表序列。

类似地,设

d 2 = 1 2 2     d 3 = 1 2 3 … d n = 1 2 n … d_{2} = \frac{1}{2^{2}}\ \ \ d_{3} = \frac{1}{2^{3}}\ldots d_{n} = \frac{1}{2^{n}}\ldots d2=221   d3=231dn=2n1

可以找到 N 2 、 N 3 … N n … N_{2}、N_{3}\ldots N_{n}\ldots N2N3Nn满足

∀ i , j ≥ N n [ Δ ( P i , P j ) < d n ] \forall i,j \geq N_{n}\left\lbrack \mathrm{\Delta}\left( P_{i},P_{j} \right) < d_{n} \right\rbrack i,jNn[Δ(Pi,Pj)<dn]

其中

N 1 < N 2 < N 3 < … < N n < … N_{1} < N_{2} < N_{3} < \ldots < N_{n} < \ldots N1<N2<N3<<Nn<

在满足条件

∀ n [ d ( p n − 1 ∗ , p ∗ ) ] < 2 d n − 1 \forall n\left\lbrack d\left( p_{n - 1}^{*},p_{*} \right) \right\rbrack < {2d}_{n - 1} n[d(pn1,p)]<2dn1

所有 p ∗ p_{*} p中,同样可以挑选得到点 p 2 ∗ 、 p 3 ∗ … p n ∗ … p_{2}^{*}、p_{3}^{*}\ldots p_{n}^{*}\ldots p2p3pn满足

∀ k ≥ N n , ∃ N n ( k ) ∈ N + , ∀ r ≥ N n ( k ) [ d ( p n ∗ , p r ( k ) ) < 2 d n = 2 n − 1 ] \forall k \geq N_{n},\exists N_{n}^{(k)} \in N^{+},\forall r \geq N_{n}^{(k)}\left\lbrack d\left( p_{n}^{*},p_{r}^{(k)} \right) < 2d_{n} = 2^{n - 1} \right\rbrack kNn,Nn(k)N+,rNn(k)[d(pn,pr(k))<2dn=2n1]

由于

∀ n [ d ( p n ∗ , p n + 1 ∗ ) ] < 2 d n \forall n\left\lbrack d\left( p_{n}^{*},p_{n + 1}^{*} \right) \right\rbrack < {2d}_{n} n[d(pn,pn+1)]<2dn

所以

∀ i , j ≥ n [ d ( p i ∗ , p j ∗ ) < 4 d n ] \forall i,j \geq n\lbrack d\left( p_{i}^{*},p_{j}^{*} \right) < 4d_{n}\rbrack i,jn[d(pi,pj)<4dn]

这样,序列 { p n ∗ } \left\{ p_{n}^{*} \right\} {pn}就是Cauchy序列,不妨设

{ p n ∗ } ∈ P ∗ ∈ X ∗ \left\{ p_{n}^{*} \right\} \in P^{*} \in X^{*} {pn}PX

因为对于任意的 ε > 0 \varepsilon > 0 ε>0,总有 2 n − 1 < ε 2^{n - 1} < \varepsilon 2n1<ε,也总有 N n N_{n} Nn且当 k > N n k > N_{n} k>Nn时满足

Δ ( P ∗ , P k ) = lim ⁡ n → ∞ d ( p n ∗ , p n ( k ) ) ≤ 2 n − 1 \mathrm{\Delta}\left( P^{*},P_{k} \right) = \lim_{n \rightarrow \infty}{d\left( p_{n}^{*},p_{n}^{(k)} \right)} \leq 2^{n - 1} Δ(P,Pk)=nlimd(pn,pn(k))2n1

从而

lim ⁡ k → ∞ Δ ( P ∗ , P k ) = 0 \lim_{k \rightarrow \infty}{\mathrm{\Delta}\left( P^{*},P_{k} \right)} = 0 klimΔ(P,Pk)=0

所以 P ∗ P^{*} P { P n } \left\{ P_{n} \right\} {Pn}的序列的极限,也就是说 X ∗ X^{*} X是完备的

d. 可取各项都是 p 、 q p、q pq的Cauchy序列做代表,这样

Δ ( P p , P q ) = lim ⁡ n → ∞ d ( p n , q n ) = lim ⁡ n → ∞ d ( p , q ) = d ( p , q ) \mathrm{\Delta}\left( P_{p},P_{q} \right) = \lim_{n \rightarrow \infty}{d\left( p_{n},q_{n} \right)} = \lim_{n \rightarrow \infty}{d(p,q)} = d(p,q) Δ(Pp,Pq)=nlimd(pn,qn)=nlimd(p,q)=d(p,q)

e. 考虑 X ∗ X^{*} X中点 P P P的代表序列 { p n } \left\{ p_{n} \right\} {pn},对于任意的 ε > 0 \varepsilon > 0 ε>0都存在 N N N使得

∀ k , m > N ∣ p k − p m ∣ < ε \forall k,m > N\left| p_{k} - p_{m} \right| < \varepsilon k,m>Npkpm<ε

所以总存在 φ ( p k ) \varphi\left( p_{k} \right) φ(pk),满足

Δ ( φ ( p k ) , P ) ≤ ε \mathrm{\Delta}\left( \varphi\left( p_{k} \right),P \right) \leq \varepsilon Δ(φ(pk),P)ε

从而 φ ( X ) \varphi(X) φ(X) X ∗ X^{*} X中稠密。

X X X完备时,Cauchy序列都会在 X X X中收敛到一点,即所有 X ∗ X^{*} X中的元素均能用 φ ( X ) \varphi(X) φ(X)来表示。而度量空间里面的收敛序列必是Cauchy序列,即 φ ( X ) \varphi(X) φ(X)中的元素均在 X ∗ X^{*} X中,从而 φ ( X ) = X ∗ \varphi(X) = X^{*} φ(X)=X

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值