【第二章 习题7】
令 A 1 , A 2 , A 3 , … … A_{1},A_{2},A_{3},\ldots\ldots A1,A2,A3,……是某度量空间的子集。
a. 如果 B n = ∪ i = 1 n A i B_{n} = \cup_{i = 1}^{n}A_{i} Bn=∪i=1nAi,证明 B ‾ n = ∪ i = 1 n A ‾ i {\overline{B}}_{n} = \cup_{i = 1}^{n}{\overline{A}}_{i} Bn=∪i=1nAi, n = 1 , 2 , 3 , … … n = 1,2,3,\ldots\ldots n=1,2,3,……。
b. 如果 B = ∪ i = 1 ∞ A i B = \cup_{i = 1}^{\infty}A_{i} B=∪i=1∞Ai,证明 B ‾ ⊃ ∪ i = 1 ∞ A ‾ i \overline{B} \supset \cup_{i = 1}^{\infty}{\overline{A}}_{i} B⊃∪i=1∞Ai。举例表明这个包含符号能够是真子集包含。
【证明】
a. 首先,由于 A i A_{i} Ai的极限点必然是 B B B的极限点,所以 ∪ i = 1 n A ‾ i ⊂ B ‾ n \cup_{i = 1}^{n}{\overline{A}}_{i} \subset {\overline{B}}_{n} ∪i=1nAi⊂Bn。
下面证明 B ‾ n ⊂ ∪ i = 1 n A ‾ i {\overline{B}}_{n} \subset \cup_{i = 1}^{n}{\overline{A}}_{i} Bn⊂∪i=1nAi。
由于 B n = ∪ i = 1 n A i B_{n} = \cup_{i = 1}^{n}A_{i} Bn=∪i=1nAi, B n B_{n} Bn中任意极限点 b b b的邻域的半径 r r r,可与满足条件的 A i A_{i} Ai组成的集族,建立函数关系
f ( r ) ≔ { A i | A i ∩ { x | ∣ x − b ∣ < r } ≠ ∅ } f(r) ≔ \left\{ A_{i} \middle| A_{i} \cap \left\{ x \middle| |x - b| < r \right\} \neq \varnothing \right\} f(r):={Ai∣Ai∩{x∣∣x−b∣<r}=∅}
该函数的定义域为
r > 0 r > 0 r>0
根据极限点的定义,每个半径 r r r的邻域中的点必定属于 A i A_{i} Ai中的一个,所以函数值始终满足表达式 ( 1 ) (1) (1)
f ( r ∗ ) ≠ ∅ \begin{array}{r} f\left( r_{*} \right) \neq \varnothing\ \end{array} f(r∗)=∅
并且
r 1 > r 2 ⇒ f ( r 1 ) ⊃ f ( r 2 ) r_{1} > r_{2} \Rightarrow f\left( r_{1} \right) \supset f\left( r_{2} \right) r1>r2⇒f(r1)⊃f(r2)
结合上面两个结论,可知表达式 ( 2 ) (2) (2)成立
∃ 1 ≤ i ≤ n , ∀ r > 0 ( A i ∈ f ( r ) ) \begin{array}{r} \exists 1 \leq i \leq n,\forall r > 0\left( A_{i} \in f(r) \right)\ \end{array} ∃1≤i≤n,∀r>0(Ai∈f(r))
否则,利用反证法
∀ 1 ≤ i ≤ n , ∃ r > 0 ( A i ∉ f ( r ) ) \forall 1 \leq i \leq n,\exists r > 0\left( A_{i} \notin f(r) \right) ∀1≤i≤n,∃r>0(Ai∈/f(r))
于是,对于每个 i i i,可得到一个 r i r_{i} ri,满足 A i ∉ f ( r ) A_{i} \notin f(r) Ai∈/f(r),令
r ∗ : = min { r 1 , r 2 , r 3 … … r n } 2 r_{*}: = \frac{\min\left\{ r_{1},r_{2},r_{3}\ldots\ldots r_{n} \right\}}{2} r∗:=2min{r1,r2,r3……rn}
此时
f ( r ∗ ) = ∅ f\left( r_{*} \right) = \varnothing f(r∗)=∅
这与 ( 1 ) (1) (1)矛盾,所以 ( 2 ) (2) (2)成立,也就是说 B n B_{n} Bn中任意极限点 b b b,必然是某个 A i A_{i} Ai的极限点,从而有
B ‾ n ⊂ ∪ i = 1 n A ‾ i {\overline{B}}_{n} \subset \cup_{i = 1}^{n}{\overline{A}}_{i} Bn⊂∪i=1nAi
b. 由于 A i A_{i} Ai的极限点必然是 B B B的极限点,所以 B ‾ ⊃ ∪ i = 1 ∞ A ‾ i \overline{B} \supset \cup_{i = 1}^{\infty}{\overline{A}}_{i} B⊃∪i=1∞Ai。
下面举例说明真包含关系,令
B = ( 0 , 1 ] B = (0,1\rbrack B=(0,1]
A i = [ 1 i , 1 ] A_{i} = \left\lbrack \frac{1}{i},1 \right\rbrack Ai=[i1,1]
那么
B ‾ = [ 0 , 1 ] \overline{B} = \lbrack 0,1\rbrack B=[0,1]
∪ i = 1 ∞ A ‾ i = ( 0 , 1 ] \cup_{i = 1}^{\infty}{\overline{A}}_{i} = (0,1\rbrack ∪i=1∞Ai=(0,1]
这样的定义满足题设
【备忘】
与(a)类似, B B B中任意极限点 b b b的邻域的半径 r r r,可与满足条件的 A i A_{i} Ai组成的集族,建立函数关系
f ( r ) ≔ { A i | A i ∩ { x | ∣ x − b ∣ < r } ≠ ∅ } f(r) ≔ \left\{ A_{i} \middle| A_{i} \cap \left\{ x \middle| |x - b| < r \right\} \neq \varnothing \right\} f(r):={Ai∣Ai∩{x∣∣x−b∣<r}=∅}
之所以当 n n n换成 ∞ \infty ∞时, B n = ∪ i = 1 n A i B_{n} = \cup_{i = 1}^{n}A_{i} Bn=∪i=1nAi不再成立,这是因为
∀ i ≥ 1 , ∃ r > 0 ( A i ∉ f ( r ) ) \forall i \geq 1,\exists r > 0\left( A_{i} \notin f(r) \right) ∀i≥1,∃r>0(Ai∈/f(r))
是能够成立的,例如 b = 0 b = 0 b=0时,对于任意 A i A_{i} Ai,当 r = 1 i r = \frac{1}{i} r=i1时, A i ∉ f ( r ) A_{i} \notin f(r) Ai∈/f(r)。
具体技术原因是
r ∗ : = min { r 1 , r 2 , r 3 … … r n } 2 r_{*}: = \frac{\min\left\{ r_{1},r_{2},r_{3}\ldots\ldots r_{n} \right\}}{2} r∗:=2min{r1,r2,r3……rn}
当 n n n换成 ∞ \infty ∞时,无法取得 r ∗ r_{*} r∗,从而导致反证法失败。