数学分析原理答案——第二章 习题7

【第二章 习题7】

A 1 , A 2 , A 3 , … … A_{1},A_{2},A_{3},\ldots\ldots A1,A2,A3,……是某度量空间的子集。

a. 如果 B n = ∪ i = 1 n A i B_{n} = \cup_{i = 1}^{n}A_{i} Bn=i=1nAi,证明 B ‾ n = ∪ i = 1 n A ‾ i {\overline{B}}_{n} = \cup_{i = 1}^{n}{\overline{A}}_{i} Bn=i=1nAi n = 1 , 2 , 3 , … … n = 1,2,3,\ldots\ldots n=1,2,3,……

b. 如果 B = ∪ i = 1 ∞ A i B = \cup_{i = 1}^{\infty}A_{i} B=i=1Ai,证明 B ‾ ⊃ ∪ i = 1 ∞ A ‾ i \overline{B} \supset \cup_{i = 1}^{\infty}{\overline{A}}_{i} Bi=1Ai。举例表明这个包含符号能够是真子集包含。

【证明】

a. 首先,由于 A i A_{i} Ai的极限点必然是 B B B的极限点,所以 ∪ i = 1 n A ‾ i ⊂ B ‾ n \cup_{i = 1}^{n}{\overline{A}}_{i} \subset {\overline{B}}_{n} i=1nAiBn

下面证明 B ‾ n ⊂ ∪ i = 1 n A ‾ i {\overline{B}}_{n} \subset \cup_{i = 1}^{n}{\overline{A}}_{i} Bni=1nAi

由于 B n = ∪ i = 1 n A i B_{n} = \cup_{i = 1}^{n}A_{i} Bn=i=1nAi B n B_{n} Bn中任意极限点 b b b的邻域的半径 r r r,可与满足条件的 A i A_{i} Ai组成的集族,建立函数关系

f ( r ) ≔ { A i | A i ∩ { x | ∣ x − b ∣ < r } ≠ ∅ } f(r) ≔ \left\{ A_{i} \middle| A_{i} \cap \left\{ x \middle| |x - b| < r \right\} \neq \varnothing \right\} f(r):={AiAi{xxb<r}=}

该函数的定义域为

r > 0 r > 0 r>0

根据极限点的定义,每个半径 r r r的邻域中的点必定属于 A i A_{i} Ai中的一个,所以函数值始终满足表达式 ( 1 ) (1) (1)

f ( r ∗ ) ≠ ∅   \begin{array}{r} f\left( r_{*} \right) \neq \varnothing\ \end{array} f(r)= 

并且

r 1 > r 2 ⇒ f ( r 1 ) ⊃ f ( r 2 ) r_{1} > r_{2} \Rightarrow f\left( r_{1} \right) \supset f\left( r_{2} \right) r1>r2f(r1)f(r2)

结合上面两个结论,可知表达式 ( 2 ) (2) (2)成立

∃ 1 ≤ i ≤ n , ∀ r > 0 ( A i ∈ f ( r ) )   \begin{array}{r} \exists 1 \leq i \leq n,\forall r > 0\left( A_{i} \in f(r) \right)\ \end{array} ∃1in,r>0(Aif(r)) 

否则,利用反证法

∀ 1 ≤ i ≤ n , ∃ r > 0 ( A i ∉ f ( r ) ) \forall 1 \leq i \leq n,\exists r > 0\left( A_{i} \notin f(r) \right) ∀1in,r>0(Ai/f(r))

于是,对于每个 i i i,可得到一个 r i r_{i} ri,满足 A i ∉ f ( r ) A_{i} \notin f(r) Ai/f(r),令

r ∗ : = min ⁡ { r 1 , r 2 , r 3 … … r n } 2 r_{*}: = \frac{\min\left\{ r_{1},r_{2},r_{3}\ldots\ldots r_{n} \right\}}{2} r:=2min{r1,r2,r3……rn}

此时

f ( r ∗ ) = ∅ f\left( r_{*} \right) = \varnothing f(r)=

这与 ( 1 ) (1) (1)矛盾,所以 ( 2 ) (2) (2)成立,也就是说 B n B_{n} Bn中任意极限点 b b b,必然是某个 A i A_{i} Ai的极限点,从而有

B ‾ n ⊂ ∪ i = 1 n A ‾ i {\overline{B}}_{n} \subset \cup_{i = 1}^{n}{\overline{A}}_{i} Bni=1nAi

b. 由于 A i A_{i} Ai的极限点必然是 B B B的极限点,所以 B ‾ ⊃ ∪ i = 1 ∞ A ‾ i \overline{B} \supset \cup_{i = 1}^{\infty}{\overline{A}}_{i} Bi=1Ai

下面举例说明真包含关系,令

B = ( 0 , 1 ] B = (0,1\rbrack B=(0,1]

A i = [ 1 i , 1 ] A_{i} = \left\lbrack \frac{1}{i},1 \right\rbrack Ai=[i1,1]

那么

B ‾ = [ 0 , 1 ] \overline{B} = \lbrack 0,1\rbrack B=[0,1]

∪ i = 1 ∞ A ‾ i = ( 0 , 1 ] \cup_{i = 1}^{\infty}{\overline{A}}_{i} = (0,1\rbrack i=1Ai=(0,1]

这样的定义满足题设

【备忘】

与(a)类似, B B B中任意极限点 b b b的邻域的半径 r r r,可与满足条件的 A i A_{i} Ai组成的集族,建立函数关系

f ( r ) ≔ { A i | A i ∩ { x | ∣ x − b ∣ < r } ≠ ∅ } f(r) ≔ \left\{ A_{i} \middle| A_{i} \cap \left\{ x \middle| |x - b| < r \right\} \neq \varnothing \right\} f(r):={AiAi{xxb<r}=}

之所以当 n n n换成 ∞ \infty 时, B n = ∪ i = 1 n A i B_{n} = \cup_{i = 1}^{n}A_{i} Bn=i=1nAi不再成立,这是因为

∀ i ≥ 1 , ∃ r > 0 ( A i ∉ f ( r ) ) \forall i \geq 1,\exists r > 0\left( A_{i} \notin f(r) \right) i1,r>0(Ai/f(r))

是能够成立的,例如 b = 0 b = 0 b=0时,对于任意 A i A_{i} Ai,当 r = 1 i r = \frac{1}{i} r=i1时, A i ∉ f ( r ) A_{i} \notin f(r) Ai/f(r)

具体技术原因是

r ∗ : = min ⁡ { r 1 , r 2 , r 3 … … r n } 2 r_{*}: = \frac{\min\left\{ r_{1},r_{2},r_{3}\ldots\ldots r_{n} \right\}}{2} r:=2min{r1,r2,r3……rn}

n n n换成 ∞ \infty 时,无法取得 r ∗ r_{*} r,从而导致反证法失败。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值