数学分析原理答案——第三章 习题11

【第三章 习题11】

假定 a n > 0 a_{n} > 0 an>0 s n = a 1 + … + a n s_{n} = a_{1} + \ldots + a_{n} sn=a1++an ∑ a n \sum a_{n} an发散

a. 证明 ∑ a n 1 + a n \sum_{}^{}\frac{a_{n}}{1 + a_{n}} 1+anan发散

b. 证明

a N + 1 s N + 1 + … + a N + k s N + k ≥ 1 − s N s N + k \frac{a_{N + 1}}{s_{N + 1}} + \ldots + \frac{a_{N + k}}{s_{N + k}} \geq 1 - \frac{s_{N}}{s_{N + k}} sN+1aN+1++sN+kaN+k1sN+ksN

再证明

∑ a n s n \sum_{}^{}\frac{a_{n}}{s_{n}} snan

发散

c. 证明

a n s n 2 ≤ 1 s n − 1 − 1 s n \frac{a_{n}}{s_{n}^{2}} \leq \frac{1}{s_{n - 1}} - \frac{1}{s_{n}} sn2ansn11sn1

再证明 ∑ a n s n 2 \sum_{}^{}\frac{a_{n}}{s_{n}^{2}} sn2an收敛

d. ∑ a n 1 + n a n \sum_{}^{}\frac{a_{n}}{1 + na_{n}} 1+nanan ∑ a n 1 + n 2 a n \sum_{}^{}\frac{a_{n}}{1 + n^{2}a_{n}} 1+n2anan怎样呢

【证明】

a. 当 a n a_{n} an无界时,此时有

lim ⁡ sup ⁡ n → 0 a n 1 + a n = 1 ≠ 0 \underset{n \rightarrow 0}{\lim\sup}\frac{a_{n}}{1 + a_{n}} = 1 \neq 0 n0limsup1+anan=1=0

此时 ∑ a n 1 + a n \sum_{}^{}\frac{a_{n}}{1 + a_{n}} 1+anan发散。

a n a_{n} an有界时,此时有

a n ≤ M a_{n} \leq M anM

∑ i = 1 n a i 1 + a i ≥ ∑ i = 1 n a i 1 + M = 1 1 + M ∑ i = 1 n a i \sum_{i = 1}^{n}\frac{a_{i}}{1 + a_{i}} \geq \sum_{i = 1}^{n}\frac{a_{i}}{1 + M} = \frac{1}{1 + M}\sum_{i = 1}^{n}a_{i} i=1n1+aiaii=1n1+Mai=1+M1i=1nai

∑ a n \sum a_{n} an发散,所以 ∑ a n 1 + a n \sum_{}^{}\frac{a_{n}}{1 + a_{n}} 1+anan发散

b. 首先

a N + 1 s N + 1 + … + a N + k s N + k ≥ a N + 1 s N + k + … + a N + k s N + k = 1 − s N s N + k \frac{a_{N + 1}}{s_{N + 1}} + \ldots + \frac{a_{N + k}}{s_{N + k}} \geq \frac{a_{N + 1}}{s_{N + k}} + \ldots + \frac{a_{N + k}}{s_{N + k}} = 1 - \frac{s_{N}}{s_{N + k}} sN+1aN+1++sN+kaN+ksN+kaN+1++sN+kaN+k=1sN+ksN

由于 ∑ a n \sum a_{n} an发散,所以 s n s_{n} sn无界,所以对于任意的 N N N都有 k k k使得

s N + k ≥ 2 s N s_{N + k} \geq 2s_{N} sN+k2sN

也就是说对于任意的 N N N都有 k k k使得

a N + 1 s N + 1 + … + a N + k s N + k ≥ 1 − 1 2 ≥ 1 2 \frac{a_{N + 1}}{s_{N + 1}} + \ldots + \frac{a_{N + k}}{s_{N + k}} \geq 1 - \frac{1}{2} \geq \frac{1}{2} sN+1aN+1++sN+kaN+k12121

根据柯西收敛准则

∑ a n s n \sum_{}^{}\frac{a_{n}}{s_{n}} snan

发散

c. 由于

a n s n 2 = s n − s n − 1 s n 2 ≤ s n − s n − 1 s n s n − 1 = 1 s n − 1 − 1 s n \frac{a_{n}}{s_{n}^{2}} = \frac{s_{n} - s_{n - 1}}{s_{n}^{2}} \leq \frac{s_{n} - s_{n - 1}}{s_{n}s_{n - 1}} = \frac{1}{s_{n - 1}} - \frac{1}{s_{n}} sn2an=sn2snsn1snsn1snsn1=sn11sn1

所以

∑ i = 2 n a i s i 2 ≤ a 1 s 1 2 + 1 s 1 − 1 s n < 2 s 1 \sum_{i = 2}^{n}\frac{a_{i}}{s_{i}^{2}} \leq \frac{a_{1}}{s_{1}^{2}} + \frac{1}{s_{1}} - \frac{1}{s_{n}} < \frac{2}{s_{1}} i=2nsi2ais12a1+s11sn1<s12

a i s i 2 \frac{a_{i}}{s_{i}^{2}} si2ai单调递增,所以 ∑ a n s n 2 \sum_{}^{}\frac{a_{n}}{s_{n}^{2}} sn2an收敛。

d. ∑ a n 1 + n a n \sum_{}^{}\frac{a_{n}}{1 + na_{n}} 1+nanan有时收敛,有时发散

a n = { 1 n = 2 m 1 n 2 n ≠ 2 m   a_{n} = \left\{ \begin{matrix} 1 & n = 2^{m} \\ \frac{1}{n^{2}} & n \neq 2^{m} \end{matrix} \right.\ an={1n21n=2mn=2m 

此时有

∑ a n 1 + n a n < ∑ 1 n 2 + n + ∑ 1 1 + 2 n < ∑ ( 1 n − 1 n + 1 ) + ∑ 1 2 n = 1 + 1 = 2 \sum_{}^{}\frac{a_{n}}{1 + na_{n}} < \sum_{}^{}\frac{1}{n^{2} + n} + \sum_{}^{}\frac{1}{1 + 2^{n}} < \sum_{}^{}\left( \frac{1}{n} - \frac{1}{n + 1} \right) + \sum_{}^{}\frac{1}{2^{n}} = 1 + 1 = 2 1+nanan<n2+n1+1+2n1<(n1n+11)+2n1=1+1=2

收敛。

a n = 1 n a_{n} = \frac{1}{n} an=n1时,

∑ a n 1 + n a n = 1 2 ∑ 1 n \sum_{}^{}\frac{a_{n}}{1 + na_{n}} = \frac{1}{2}\sum_{}^{}\frac{1}{n} 1+nanan=21n1

发散。

由于

a n 1 + n 2 a n < a n n 2 a n = 1 n 2 \frac{a_{n}}{1 + n^{2}a_{n}} < \frac{a_{n}}{n^{2}a_{n}} = \frac{1}{n^{2}} 1+n2anan<n2anan=n21

∑ 1 n 2 \sum_{}^{}\frac{1}{n^{2}} n21

收敛,所以 ∑ a n 1 + n 2 a n \sum_{}^{}\frac{a_{n}}{1 + n^{2}a_{n}} 1+n2anan收敛。

1 n 2 \frac{1}{n^{2}} n21

【备忘】

为了使

∑ a n 1 + n a n \sum_{}^{}\frac{a_{n}}{1 + na_{n}} 1+nanan

收敛,注意到 n a n na_{n} nan的部分极限一定不能有上界,否则该级数发散。同时,注意到

a n 1 + n a n = 1 n × 1 1 a n n + 1 \frac{a_{n}}{1 + na_{n}} = \frac{1}{n} \times \frac{1}{\frac{1}{a_{n}n} + 1} 1+nanan=n1×ann1+11

同理 1 a n n \frac{1}{a_{n}n} ann1的部分极限一定不能有上界,否则该级数发散。综合可得

lim ⁡ sup ⁡ n → ∞ n a n = + ∞ \underset{n \rightarrow \infty}{\lim\sup}{na_{n}} = + \infty nlimsupnan=+

lim ⁡ sup ⁡ n → ∞ 1 n a n = + ∞ ⇔ lim ⁡ inf ⁡ n → ∞ n a n = 0 \underset{n \rightarrow \infty}{\lim\sup}\frac{1}{na_{n}} = + \infty \Leftrightarrow \underset{n \rightarrow \infty}{\lim\inf}{na_{n}} = 0 nlimsupnan1=+nliminfnan=0

所以 n a n na_{n} nan的没有极限,只有部分极限,由于初等函数的复合的极限一般固定,所以为了凑出这个 a n a_{n} an的表达式,最好的办法是用分情况讨论的方式定义。

a n = { 1 n = 2 m 1 n 2 n ≠ 2 m   a_{n} = \left\{ \begin{matrix} 1 & n = 2^{m} \\ \frac{1}{n^{2}} & n \neq 2^{m} \end{matrix} \right.\ an={1n21n=2mn=2m 

恰好满足

lim ⁡ sup ⁡ n → ∞   n a n = + ∞ \underset{n \rightarrow \infty}{\lim\sup}\ {na_{n}} = + \infty nlimsup nan=+

lim ⁡ inf ⁡ n → ∞   n a n = lim ⁡ n → ∞ 1 n = 0 \underset{n \rightarrow \infty}{\lim\inf}\ {na_{n}} = \lim_{n \rightarrow \infty}\frac{1}{n} = 0 nliminf nan=nlimn1=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值