【第三章 习题11】
假定 a n > 0 a_{n} > 0 an>0, s n = a 1 + … + a n s_{n} = a_{1} + \ldots + a_{n} sn=a1+…+an而 ∑ a n \sum a_{n} ∑an发散
a. 证明 ∑ a n 1 + a n \sum_{}^{}\frac{a_{n}}{1 + a_{n}} ∑1+anan发散
b. 证明
a N + 1 s N + 1 + … + a N + k s N + k ≥ 1 − s N s N + k \frac{a_{N + 1}}{s_{N + 1}} + \ldots + \frac{a_{N + k}}{s_{N + k}} \geq 1 - \frac{s_{N}}{s_{N + k}} sN+1aN+1+…+sN+kaN+k≥1−sN+ksN
再证明
∑ a n s n \sum_{}^{}\frac{a_{n}}{s_{n}} ∑snan
发散
c. 证明
a n s n 2 ≤ 1 s n − 1 − 1 s n \frac{a_{n}}{s_{n}^{2}} \leq \frac{1}{s_{n - 1}} - \frac{1}{s_{n}} sn2an≤sn−11−sn1
再证明 ∑ a n s n 2 \sum_{}^{}\frac{a_{n}}{s_{n}^{2}} ∑sn2an收敛
d. ∑ a n 1 + n a n \sum_{}^{}\frac{a_{n}}{1 + na_{n}} ∑1+nanan, ∑ a n 1 + n 2 a n \sum_{}^{}\frac{a_{n}}{1 + n^{2}a_{n}} ∑1+n2anan怎样呢
【证明】
a. 当 a n a_{n} an无界时,此时有
lim sup n → 0 a n 1 + a n = 1 ≠ 0 \underset{n \rightarrow 0}{\lim\sup}\frac{a_{n}}{1 + a_{n}} = 1 \neq 0 n→0limsup1+anan=1=0
此时 ∑ a n 1 + a n \sum_{}^{}\frac{a_{n}}{1 + a_{n}} ∑1+anan发散。
当 a n a_{n} an有界时,此时有
a n ≤ M a_{n} \leq M an≤M
∑ i = 1 n a i 1 + a i ≥ ∑ i = 1 n a i 1 + M = 1 1 + M ∑ i = 1 n a i \sum_{i = 1}^{n}\frac{a_{i}}{1 + a_{i}} \geq \sum_{i = 1}^{n}\frac{a_{i}}{1 + M} = \frac{1}{1 + M}\sum_{i = 1}^{n}a_{i} i=1∑n1+aiai≥i=1∑n1+Mai=1+M1i=1∑nai
而 ∑ a n \sum a_{n} ∑an发散,所以 ∑ a n 1 + a n \sum_{}^{}\frac{a_{n}}{1 + a_{n}} ∑1+anan发散
b. 首先
a N + 1 s N + 1 + … + a N + k s N + k ≥ a N + 1 s N + k + … + a N + k s N + k = 1 − s N s N + k \frac{a_{N + 1}}{s_{N + 1}} + \ldots + \frac{a_{N + k}}{s_{N + k}} \geq \frac{a_{N + 1}}{s_{N + k}} + \ldots + \frac{a_{N + k}}{s_{N + k}} = 1 - \frac{s_{N}}{s_{N + k}} sN+1aN+1+…+sN+kaN+k≥sN+kaN+1+…+sN+kaN+k=1−sN+ksN
由于 ∑ a n \sum a_{n} ∑an发散,所以 s n s_{n} sn无界,所以对于任意的 N N N都有 k k k使得
s N + k ≥ 2 s N s_{N + k} \geq 2s_{N} sN+k≥2sN
也就是说对于任意的 N N N都有 k k k使得
a N + 1 s N + 1 + … + a N + k s N + k ≥ 1 − 1 2 ≥ 1 2 \frac{a_{N + 1}}{s_{N + 1}} + \ldots + \frac{a_{N + k}}{s_{N + k}} \geq 1 - \frac{1}{2} \geq \frac{1}{2} sN+1aN+1+…+sN+kaN+k≥1−21≥21
根据柯西收敛准则
∑ a n s n \sum_{}^{}\frac{a_{n}}{s_{n}} ∑snan
发散
c. 由于
a n s n 2 = s n − s n − 1 s n 2 ≤ s n − s n − 1 s n s n − 1 = 1 s n − 1 − 1 s n \frac{a_{n}}{s_{n}^{2}} = \frac{s_{n} - s_{n - 1}}{s_{n}^{2}} \leq \frac{s_{n} - s_{n - 1}}{s_{n}s_{n - 1}} = \frac{1}{s_{n - 1}} - \frac{1}{s_{n}} sn2an=sn2sn−sn−1≤snsn−1sn−sn−1=sn−11−sn1
所以
∑ i = 2 n a i s i 2 ≤ a 1 s 1 2 + 1 s 1 − 1 s n < 2 s 1 \sum_{i = 2}^{n}\frac{a_{i}}{s_{i}^{2}} \leq \frac{a_{1}}{s_{1}^{2}} + \frac{1}{s_{1}} - \frac{1}{s_{n}} < \frac{2}{s_{1}} i=2∑nsi2ai≤s12a1+s11−sn1<s12
而 a i s i 2 \frac{a_{i}}{s_{i}^{2}} si2ai单调递增,所以 ∑ a n s n 2 \sum_{}^{}\frac{a_{n}}{s_{n}^{2}} ∑sn2an收敛。
d. ∑ a n 1 + n a n \sum_{}^{}\frac{a_{n}}{1 + na_{n}} ∑1+nanan有时收敛,有时发散
当
a n = { 1 n = 2 m 1 n 2 n ≠ 2 m a_{n} = \left\{ \begin{matrix} 1 & n = 2^{m} \\ \frac{1}{n^{2}} & n \neq 2^{m} \end{matrix} \right.\ an={1n21n=2mn=2m
此时有
∑ a n 1 + n a n < ∑ 1 n 2 + n + ∑ 1 1 + 2 n < ∑ ( 1 n − 1 n + 1 ) + ∑ 1 2 n = 1 + 1 = 2 \sum_{}^{}\frac{a_{n}}{1 + na_{n}} < \sum_{}^{}\frac{1}{n^{2} + n} + \sum_{}^{}\frac{1}{1 + 2^{n}} < \sum_{}^{}\left( \frac{1}{n} - \frac{1}{n + 1} \right) + \sum_{}^{}\frac{1}{2^{n}} = 1 + 1 = 2 ∑1+nanan<∑n2+n1+∑1+2n1<∑(n1−n+11)+∑2n1=1+1=2
收敛。
当 a n = 1 n a_{n} = \frac{1}{n} an=n1时,
∑ a n 1 + n a n = 1 2 ∑ 1 n \sum_{}^{}\frac{a_{n}}{1 + na_{n}} = \frac{1}{2}\sum_{}^{}\frac{1}{n} ∑1+nanan=21∑n1
发散。
由于
a n 1 + n 2 a n < a n n 2 a n = 1 n 2 \frac{a_{n}}{1 + n^{2}a_{n}} < \frac{a_{n}}{n^{2}a_{n}} = \frac{1}{n^{2}} 1+n2anan<n2anan=n21
而
∑ 1 n 2 \sum_{}^{}\frac{1}{n^{2}} ∑n21
收敛,所以 ∑ a n 1 + n 2 a n \sum_{}^{}\frac{a_{n}}{1 + n^{2}a_{n}} ∑1+n2anan收敛。
1 n 2 \frac{1}{n^{2}} n21
【备忘】
为了使
∑ a n 1 + n a n \sum_{}^{}\frac{a_{n}}{1 + na_{n}} ∑1+nanan
收敛,注意到 n a n na_{n} nan的部分极限一定不能有上界,否则该级数发散。同时,注意到
a n 1 + n a n = 1 n × 1 1 a n n + 1 \frac{a_{n}}{1 + na_{n}} = \frac{1}{n} \times \frac{1}{\frac{1}{a_{n}n} + 1} 1+nanan=n1×ann1+11
同理 1 a n n \frac{1}{a_{n}n} ann1的部分极限一定不能有上界,否则该级数发散。综合可得
lim sup n → ∞ n a n = + ∞ \underset{n \rightarrow \infty}{\lim\sup}{na_{n}} = + \infty n→∞limsupnan=+∞
lim sup n → ∞ 1 n a n = + ∞ ⇔ lim inf n → ∞ n a n = 0 \underset{n \rightarrow \infty}{\lim\sup}\frac{1}{na_{n}} = + \infty \Leftrightarrow \underset{n \rightarrow \infty}{\lim\inf}{na_{n}} = 0 n→∞limsupnan1=+∞⇔n→∞liminfnan=0
所以 n a n na_{n} nan的没有极限,只有部分极限,由于初等函数的复合的极限一般固定,所以为了凑出这个 a n a_{n} an的表达式,最好的办法是用分情况讨论的方式定义。
a n = { 1 n = 2 m 1 n 2 n ≠ 2 m a_{n} = \left\{ \begin{matrix} 1 & n = 2^{m} \\ \frac{1}{n^{2}} & n \neq 2^{m} \end{matrix} \right.\ an={1n21n=2mn=2m
恰好满足
lim sup n → ∞ n a n = + ∞ \underset{n \rightarrow \infty}{\lim\sup}\ {na_{n}} = + \infty n→∞limsup nan=+∞
lim inf n → ∞ n a n = lim n → ∞ 1 n = 0 \underset{n \rightarrow \infty}{\lim\inf}\ {na_{n}} = \lim_{n \rightarrow \infty}\frac{1}{n} = 0 n→∞liminf nan=n→∞limn1=0