【第五章 习题29】
把习题28特殊化,考虑方程组
y j ′ = y j + 1 ( j = 1 , … , k − 1 ) y_{j}^{'} = y_{j + 1}\ (j = 1,\ldots,k - 1) yj′=yj+1 (j=1,…,k−1)
y k ′ = f ( x ) − ∑ j = 1 k g j ( x ) y j y_{k}^{'} = f(x) - \sum_{j = 1}^{k}{g_{j}(x)y_{j}} yk′=f(x)−j=1∑kgj(x)yj
这里 f , g 1 , … , g k f,g_{1},\ldots,g_{k} f,g1,…,gk都是 [ a , b ] \lbrack a,b\rbrack [a,b]上的连续实函数,从而对于带有初始条件
y ( a ) = c 1 , y ′ ( a ) = c 2 , … , y k − 1 ( a ) = c k y(a) = c_{1},y^{'}(a) = c_{2},\ldots,y^{k - 1}(a) = c_{k} y(a)=c1,y′(a)=c2,…,yk−1(a)=ck
的方程
y ( k ) + g k ( x ) y ( k − 1 ) + … + g 2 ( x ) y ′ + g 1 ( x ) y = f ( x ) y^{(k)} + g_{k}(x)y^{(k - 1)} + \ldots + g_{2}(x)y^{'} + g_{1}(x)y = f(x) y(k)+gk(x)y(k−1)+…+g2(x)y′+g1(x)y=f(x)
导出唯一性定理来。
【解】
唯一性定理:
若函数 ∣ g i ( x ) ∣ \left| g_{i}(x) \right| ∣gi(x)∣都有上界,那么原微分方程最多有一个解
证明:
设向量值函数
y = ( y 1 , y 2 , y 3 … y k ) = ( y , y ′ , y ′ ′ , … , y ( k − 1 ) ) \mathbf{y} = \left( y_{1},y_{2},y_{3}\ldots y_{k} \right) = \left( y,y^{'},y^{''},\ldots,y^{(k - 1)} \right) y=(y1,y2,y3…yk)=(y,y′,y′′,…,y(k−1))
那么原微分方程的解的个数取决于向量值函数 y \mathbf{y} y的个数。
其中 y y y是一个定义在 [ a , b ] \lbrack a,b\rbrack [a,b]上的连续实函数,另外设
M = sup 1 ≤ i ≤ k ∣ g k ( x ) ∣ M = \sup_{1 \leq i \leq k}\left| g_{k}(x) \right| M=1≤i≤ksup∣gk(x)∣
ϕ ( x , y ) = y ′ = ( y 2 , y 3 , y 4 , … , f ( x ) − ∑ j = 1 k g j ( x ) y j ) \phi\left( x,\mathbf{y} \right) = \mathbf{y}^{\mathbf{'}} = \left( y_{2},y_{3},y_{4},\ldots,f(x) - \sum_{j = 1}^{k}{g_{j}(x)y_{j}} \right) ϕ(x,y)=y′=(y2,y3,y4,…,f(x)−j=1∑kgj(x)yj)
= ( y ′ , y ′ ′ , y ′ ′ ′ , … , f ( x ) − ∑ j = 1 k g j ( x ) y ( j − 1 ) ) = \left( y^{'},y^{''},y^{'''},\ldots,f(x) - \sum_{j = 1}^{k}{g_{j}(x)y^{(j - 1)}} \right) =(y′,y′′,y′′′,…,f(x)−j=1∑kgj(x)y(j−1))
由于
∣ ϕ ( x , p ) − ϕ ( x , q ) ∣ \left| \phi\left( x,\mathbf{p} \right) - \phi\left( x,\mathbf{q} \right) \right| ∣ϕ(x,p)−ϕ(x,q)∣
= ∣ ( p 1 − q 1 , p 1 − q 1 , … , p k − q k ) ∣ = \left| \left( p_{1} - q_{1},p_{1} - q_{1},\ldots,p_{k} - q_{k} \right) \right| =∣(p1−q1,p1−q1,…,pk−qk)∣
= ∣ ( p ′ − q ′ , p ′ ′ − q ′ ′ , … , − ∑ j = 1 k g j ( x ) ( p ( j − 1 ) − q ( j − 1 ) ) ) ∣ = \left| \left( p^{'} - q^{'},p^{''} - q^{''},\ldots, - \sum_{j = 1}^{k}{g_{j}(x)\left( p^{(j - 1)} - q^{(j - 1)} \right)} \right) \right| = (p′−q′,p′′−q′′,…,−j=1∑kgj(x)(p(j−1)−q(j−1)))
根据柯西施瓦茨不等式
( ∑ j = 1 k g j ( x ) ( p ( j − 1 ) − q ( j − 1 ) ) ) 2 \left( \sum_{j = 1}^{k}{g_{j}(x)\left( p^{(j - 1)} - q^{(j - 1)} \right)} \right)^{2} (j=1∑kgj(x)(p(j−1)−q(j−1)))2
≤ ( ∑ j = 1 k g j ( x ) 2 ) ( ∑ j = 1 k ( p ( j − 1 ) − q ( j − 1 ) ) 2 ) ≤ k M 2 ( ∑ j = 1 k ( p ( j − 1 ) − q ( j − 1 ) ) 2 ) \leq \left( \sum_{j = 1}^{k}{g_{j}(x)^{2}} \right)\left( \sum_{j = 1}^{k}\left( p^{(j - 1)} - q^{(j - 1)} \right)^{2} \right) \leq kM^{2}\left( \sum_{j = 1}^{k}\left( p^{(j - 1)} - q^{(j - 1)} \right)^{2} \right) ≤(j=1∑kgj(x)2)(j=1∑k(p(j−1)−q(j−1))2)≤kM2(j=1∑k(p(j−1)−q(j−1))2)
可知
∣ ϕ ( x , p ) − ϕ ( x , q ) ∣ \left| \phi\left( x,\mathbf{p} \right) - \phi\left( x,\mathbf{q} \right) \right| ∣ϕ(x,p)−ϕ(x,q)∣
≤ k M 2 + 1 ∣ ( p − q , p ′ − q ′ , p ′ ′ − q ′ ′ , … , p ( k − 1 ) − q ( k − 1 ) ) ∣ \leq \sqrt{kM^{2} + 1}\ \left| \left( p - q,p^{'} - q^{'},p^{''} - q^{''},\ldots,p^{(k - 1)} - q^{(k - 1)} \right) \right| ≤kM2+1 (p−q,p′−q′,p′′−q′′,…,p(k−1)−q(k−1))
≤ k M 2 + 1 ∣ p − q ∣ \leq \sqrt{kM^{2} + 1}\ \left| \mathbf{p} - \mathbf{q} \right| ≤kM2+1 ∣p−q∣
其中 k M 2 + 1 \sqrt{kM^{2} + 1} kM2+1为定值,不受 ( x , y ) \left( x,\mathbf{y} \right) (x,y)影响,不等式恒成立,根据前面习题28的结论,可知向量值函数最多有一个解。
也就是说,对于带有初始条件
y ( a ) = c 1 , y ′ ( a ) = c 2 , … , y k − 1 ( a ) = c k y(a) = c_{1},y^{'}(a) = c_{2},\ldots,y^{k - 1}(a) = c_{k} y(a)=c1,y′(a)=c2,…,yk−1(a)=ck
的方程
y ( k ) + g k ( x ) y ( k − 1 ) + … + g 2 ( x ) y ′ + g 1 ( x ) y = f ( x ) y^{(k)} + g_{k}(x)y^{(k - 1)} + \ldots + g_{2}(x)y^{'} + g_{1}(x)y = f(x) y(k)+gk(x)y(k−1)+…+g2(x)y′+g1(x)y=f(x)
若函数 ∣ g i ( x ) ∣ \left| g_{i}(x) \right| ∣gi(x)∣都有上界,那么原微分方程最多有一个解。