卷积的定义
卷积大白话
卷积是一种运算,比加减乘除稍复杂的运算。
1.f(x)和g(y)是两个一元函数 // f(x)和g(y)分别是x和y的一个映射,这个映射是任意的。
2.以x为横轴,y为纵轴建立直角坐标系
3.定义:U(x,y) = f(x) * g(y) //函数U不是x、y的函数,而是x、y映射的函数,即f(x)、g(y)的函数
4.求直线 y = -x + n 上的所有点,的U(x,y),的和,这个和就叫f(x)和g(y)的卷积。
矩阵卷积
向量的內积是向量变标量的一种运算方法
矩阵的內积是矩阵变向量的一种运算方法
矩阵的卷积是矩阵变标量的一种运算方法
举例
图像处理中,图像可以表示为矩阵形式,如我们在原始图像矩阵中,取出像素(u,v)处的3x3矩阵:
对图像的处理函数(如平滑,或者边缘提取),也可以用一个矩阵来表示,如:
那么矩阵 f 和 g 在(u,v)处的卷积 ( f * g )(u,v) 该如何计算呢?
即:
1.把矩阵 g 旋转180o
2.把矩阵 f 和矩阵 g 对应位置元素相乘,再相加。
3.得到一个标量。