为你实现爱情理想

两个人的生活是否幸福,取决与他们的内在品质及性格的相容度。相容度越高,婚姻基础越牢固。 绝对100婚恋网获国家专利的相容性测试匹配系统是已被证实的保证两个人幸福一生的重要工具,它在很大程度上能够降低婚姻不幸的风险,提高美满婚姻的比例。
http://nptclick.nptcn.com.cn:9000/15/796306

爱情进化算法通常是一种模拟自然选择过程的优化算法,用于解决一些复杂的问题,比如寻找最优解或近似最优解。它源自于达尔文的演化论,通过随机变异、选择和遗传等机制来迭代改进解决方案。Python作为一门流行的科学计算语言,非常适合实现这种算法。 以下是简化的爱情进化算法Python代码示例,这里假设我们要在一个二维空间中找到一个理想伴侣的理想匹配: ```python import numpy as np # 定义个体(潜在伴侣) class Individual: def __init__(self, preferences): self.preferences = preferences self.fitness = None # 模拟适应度函数(如双方兴趣匹配程度) def calculate_fitness(individual1, individual2): return sum([i1 * i2 for i1, i2 in zip(individual1.preferences, individual2.preferences)]) # 进化函数 def evolve(population, size, mutation_rate): new_population = [] for _ in range(size): # 遗传操作 parent1, parent2 = np.random.choice(population, size=2) child_preferences = [parent1.preferences[i] + (np.random.rand() < mutation_rate) * (parent2.preferences[i] - parent1.preferences[i]) for i in range(len(parent1.preferences))] # 创建新个体并计算适应度 child = Individual(child_preferences) child.fitness = calculate_fitness(child, child) new_population.append(child) return new_population # 示例使用 initial_population = [Individual(np.array([1, 0, 0.5])) for _ in range(10)] # 假设我们有10位初始个体 mutation_rate = 0.1 population_size = 10 for _ in range(100): # 可视化迭代次数 population = evolve(population, population_size, mutation_rate) print(f"Generation {_:03d}: Best fit: {max([p.fitness for p in population]):.2f} with preferences {population[np.argmax([p.fitness for p in population])].preferences}")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值