傅里叶变换究竟是什么玩意 以及 这些公式究竟是怎么来的 第五章 傅里叶开始变换了

    转接第三章,我们知道了a_{k}a_{-k}   (k\in (-\infty\sim +\infty))  可以代表信号中频率为k\omega_{0} 的分量大小,所以现在涉及的最重要的问题就是,如何把a_{k}求出来(毕竟a_{-k}可以直接使用a_{k}的共轭来得出)。

    以下的整个过程,就被称为傅里叶级数(即a_{k})的求法

    它的求法其实没有什么可解释的,无非是看看《信号与系统》或者《傅里叶变换与应用》这些课本。为了完整性这里也是重新带着大家推导一遍:以下推导求a_{k}的公式,并没有什么物理意义,仅仅只是为了推导求a_{k}的值罢了,不想看就可以跳过

   x(t)=\sum_{k=-\infty}^{+\infty}a_ke^{jk\omega_{0}t}  在等式两边同时乘e^{-jn\omega_{0}t}

    x(t)e^{-jn\omega_{0}t}=\sum_{k=-\infty}^{+\infty}a_{k}e^{jk\omega_{0}t}e^{-jn\omega_{0}t}

    之后,我们对等式两边进行一个周期内的积分:为了简单就从0到T(这里的 T 其实就是 2π/ω )之间进行积分,你可以为了找刺激从2.1T到3.1T进行积分,不过,反正我们的目标只是为了求出来a_{k}就好了,干嘛要为难自己呢?

    所以我们得到了:

    \int_{0}^{T}x(t)e^{-jn\omega_{0}t}=\int_{0}^{T} \sum_{k=-\infty}^{+\infty}a_{k}e^{jk\omega_{0}t}e^{-jn\omega_{0}t}dt=\sum_{k=-\infty}^{+\infty} a_{k} \left\[ \int_{0}^{T} e^{j[k-n]\omega_{0}t} dt\right\]

    对于最后边的公式,我们可以化成正余弦形式:

    \int_{0}^{T} e^{j[k-n]\omega_{0}t} dt = \int_{0}^{T} \left\[cos(k-n)\omega_{0}tdt+jsin(k-n)\omega_{0}tdt\right\]

    我们知道,对正弦信号的一个周期求积分的结果为0,如果k≠n,那么根据T=\frac{2\pi}{\omega_{0}}=(k-n) \frac{2\pi}{(k-n)\omega_{0}} ,即积分的区间(0-T)是k-n个 cos(k-n)\omega_{0}t 的周期,也是k-n个 jsin(k-n)\omega_{0}t 的周期,即加起来以后都是0。所以说有以下结论:

    \int_{0}^{T} e^{j[k-n]\omega_{0}t} dt =\left\{\begin{matrix} 0 , k\neq n\\ T,k=n \end{matrix}\right.

  所以我们求得:

  a_{n}=\frac{1}{T}\int_{0}^{T}x(t)e^{-jn\omega_{0}t}

  这就是我们要求得的值。假设我们现在有了一个信号:x(t),我们想知道这个信号的频域中,频率为3的分量的幅值是多少的时候,我们就可以把n=3代入,也就可以得到相应的a_{3}的值,再把a_{3}取共轭,就得到了a_{-3}的值

  由此,我们就得到了我们想要的东西:当我们有了一个周期信号在时间域上的表示x(t),通过傅里叶变换,我们就可以求出其在频域上的表示。

  但是要知道,世界上大部分信号并不是周期的,很多也都是非周期的信号,那我们应该怎样去计算它的频域上的表示呢?这将在下一章进行叙述。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dezeming

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值