电动力学的数学准备 02 柱函数

本文详细介绍了Bessel函数的起源、性质及其在柱坐标系下的应用。Bessel方程在物理问题中的重要性在于它能描述柱面波的传播,整数阶Bessel函数在Laplace边值问题中有关键作用。此外,还探讨了虚宗量Bessel函数,如第一类虚宗量Bessel函数Iν(x)和第二类虚宗量Bessel函数Kν(x)。这些函数在解决特定类型的边界问题时提供了解析解。
摘要由CSDN通过智能技术生成

内容


Bessel 函数

Bessel 方程的引入

在柱坐标系 ( r , θ , z ) (r,\theta,z) (r,θ,z) 下 Helmholtz 方程 ( ∇ 2 + k 2 ) u = 0 (\nabla^2+k^2)u=0 (2+k2)u=0 写为

[ 1 r d d r ( r d d r ) + 1 r 2 d 2 d θ 2 + d 2 d z 2 + k 2 ] u ( r , θ , z ) = 0 \left[\frac{1}{r}\frac{{\rm d}}{{\rm d}r}\left(r\frac{{\rm d}}{{\rm d}r}\right)+\frac{1}{r^2}\frac{{\rm d}^2}{{\rm d}\theta^2}+\frac{{\rm d}^2}{{\rm d}z^2}+k^2\right]u(r,\theta,z)=0 [r1drd(rdrd)+r21dθ2d2+dz2d2+k2]u(r,θ,z)=0

分离变量 u ( r , θ , z ) = R ( r ) Θ ( θ ) Z ( z ) u(r,\theta,z)=R(r)\Theta(\theta)Z(z) u(r,θ,z)=R(r)Θ(θ)Z(z) 就得到

{ d 2 Z ( z ) d z 2 + λ Z ( z ) = 0 d 2 Θ ( θ ) d θ 2 + μ Θ ( θ ) = 0 1 r d d r ( r d R ( r ) d r ) + ( k 2 − λ − μ r 2 ) R ( r ) = 0 \begin{cases} \cfrac{{\rm d}^2Z(z)}{{\rm d}z^2}+\lambda{Z}(z)=0\\ \cfrac{{\rm d}^2\Theta(\theta)}{{\rm d}\theta^2}+\mu\Theta(\theta)=0\\ \cfrac{1}{r}\cfrac{{\rm d}}{{\rm d}r}\left(r\cfrac{{\rm d}R(r)}{{\rm d}r}\right)+\left(k^2-\lambda-\cfrac{\mu}{r^2}\right)R(r)=0 \end{cases} dz2d2Z(z)+λZ(z)=0dθ2d2Θ(θ)+μΘ(θ)=0r1drd(rdrdR(r))+(k2λr2μ)R(r)=0

其中 λ , μ \lambda,\mu λ,μ 是分离变量产生的参数,记 μ = ν 2 \mu=\nu^2 μ=ν2 。前两个方程容易求解,第三个方程在 k 2 − λ = 0 k^2-\lambda=0 k2λ=0 时也容易解出 R ( r ) = A r ν + B r − ν R(r)=Ar^{\nu}+Br^{-\nu} R(r)=Arν+Brν
如果 k 2 − λ k^2-\lambda k2λ 非零,关于 R ( r ) R(r) R(r) 的方程作换元 x = r k 2 − λ x=r\sqrt{k^2-\lambda} x=rk2λ ,记 R ( r ) = y ( x ) R(r)=y(x) R(r)=y(x) 就得到

1 x d d x ( x d y ( x ) d x ) + ( 1 − ν 2 x 2 ) y ( x ) = 0 \frac{1}{x}\frac{{\rm d}}{{\rm d}x}\left(x\frac{{\rm d}y(x)}{{\rm d}x}\right)+\left(1-\frac{\nu^2}{x^2}\right)y(x)=0 x1dxd(xdxdy(x))+(1x2ν2)y(x)=0

称为 ν \nu ν 阶 Bessel 方程 。以下先讨论 Bessel 方程解的性质,再介绍它在分离变量法中的应用。

Bessel 方程解的性质

先在复数域上讨论Bessel方程,已将其写成

d 2 w ( z ) d z 2 + 1 z d w ( z ) d z + ( 1 − ν 2 z 2 ) w ( z ) = 0 \frac{{\rm d}^2w(z)}{{\rm d}z^2}+\frac{1}{z}\frac{{\rm d}w(z)}{{\rm d}z}+\left(1-\frac{\nu^2}{z^2}\right)w(z)=0 dz2d2w(z)+z1dzdw(z)+(1z2ν2)w(z)=0

约定 R e   ν > 0 {\rm Re}\,\nu>0 Reν>0

根据常微分方程的幂级数解法理论,由 p ( z ) = z − 1 p(z)=z^{-1} p(z)=z1 q ( z ) = 1 − ν 2 z − 2 q(z)=1-\nu^2z^{-2} q(z)=1ν2z2 知道

  • z = 0 z=0 z=0 是方程的正则奇点
  • z = ∞ z=\infty z= 是方程的非正则奇点

z = 0 z=0 z=0 处指标 ρ = ± ν \rho=\pm{\nu} ρ=±ν ν ∉ Z \nu\notin\mathbb{Z} ν/Z 时方程的两线性无关解可以写为

w 1 , 2 ( z ) = J ± ν ( z ) ≡ ∑ k = 0 + ∞ ( − 1 ) k k ! Γ ( k ± ν + 1 ) ( z 2 ) 2 k ± ν w_{1,2}(z)=J_{\pm{\nu}}(z)\equiv\sum_{k=0}^{+\infty}\frac{(-1)^k}{k!\Gamma(k\pm{\nu}+1)}\left(\frac{z}{2}\right)^{2k\pm{\nu}} w1,2(z)=J±ν(z)k=0+k!Γ(k±ν+1)(1)k(2z)2k±ν

而如果 ν ∈ Z \nu\in\mathbb{Z} νZ J ± ν J_{\pm{\nu}} J±ν 就线性相关,这是因为

J − ν ( z ) = ∑ k = ν + ∞ ( − 1 ) k k ! Γ ( k − ν + 1 ) ( z 2 ) 2 k − ν = ∑ l = 0 + ∞ ( − 1 ) l + ν l ! Γ ( l + ν + 1 ) ( z 2 ) 2 l + ν = ( − 1 ) ν J ν ( z ) J_{-\nu}(z)=\sum_{\color{DarkRed}{k=\nu}}^{+\infty}\frac{(-1)^k}{k!\Gamma(k-\nu+1)}\left(\frac{z}{2}\right)^{2k-\nu}=\sum_{l=0}^{+\infty}\frac{(-1)^{l+\nu}}{l!\Gamma(l+\nu+1)}\left(\frac{z}{2}\right)^{2l+\nu}=(-1)^{\nu}J_{\nu}(z) Jν(z)=k=ν+k!Γ(kν+1)(1)k(2z)2kν=l=0+l!Γ(l+ν+1)(1)l+ν(2z)2l+ν=(1)νJν(z)

注意 Γ ( − n ) = ∞ ∀ n ≥ 0 , n ∈ Z \Gamma(-n)=\infty\quad\forall{n}\geq{0},n\in\mathbb{Z} Γ(n)=n0,nZ

特别地 ν = 0 \nu=0 ν=0 J ± ν ( z ) J_{\pm{\nu}}(z) J±ν(z) 相同。以上表明 ν \nu ν 为非负整数 n n n 时 Bessel 方程的第二解要采取对数形式

w 2 ( z ) = g J n ( z ) ln ⁡ z + ∑ k = 0 + ∞ d k z k − n w_2(z)=gJ_n(z)\ln{z}+\sum_{k=0}^{+\infty}d_kz^{k-n} w2(z)=gJn(z)lnz+k=0+dkzkn

Neumann 函数的构造

事实上如果知道二阶ODE的一个解 w 1 ( z ) w_1(z) w1(z) ,可以通过方程的系数求另一解 w 2 w_2 w2

( w 1 w 2 ′ − w 2 w 1 ′ ) ′ w 1 w 2 ′ − w 2 w 1 ′ = − p ( z ) w 1 w 2 ′ − w 2 w 1 ′ = A exp ⁡ ( − ∫ z p ( ξ ) d ξ ) \begin{aligned} &\frac{(w_1w_2'-w_2w_1')'}{w_1w_2'-w_2w_1'}=-p(z)\\ &{w}_1w_2'-w_2w_1'=A\exp\left(-\int^zp(\xi){\rm d\xi}\right) \end{aligned} w1w2w2w1(w1w2w2w1)=p(z)w1w2w2w1=Aexp(zp(ξ)dξ)

具体地,可以算出

W r o n s k i [ J ν , J − ν ] ≡ ∣ J ν J ν ′ J − ν J − ν ′ ∣ = − 2 π z sin ⁡ π ν {\rm Wronski}[J_{\nu},J_{-\nu}]\equiv\begin{vmatrix}J_{\nu}&J_{\nu}'\\J_{-\nu}&J_{-\nu}'\end{vmatrix}=-\frac{2}{\pi{z}}\sin\pi\nu Wronski[Jν,Jν]JνJνJνJν=πz2sinπν

ν = 0 , 1 , 2 , ⋯ ∈ N \nu=0,1,2,\cdots\in\mathbb{N} ν=0,1,2,N W r o n s k i [ J ν , J − ν ] ∼ sin ⁡ n π = 0 {\rm Wronski}[J_{\nu},J_{-\nu}]\sim\sin{n}\pi=0 Wronski[Jν,Jν]sinnπ=0 。设 w 2 ( z ) = c 1 J ν ( z ) + c 2 J − ν ( z ) w_2(z)=c_1J_{\nu}(z)+c_2J_{-\nu}(z) w2(z)=c1Jν(z)+c2Jν(z) ,考虑

W r o n s k i [ J ν , w 2 ] = W r o n s k i [ J ν , c 2 J − ν ] = − 2 c 2 π z sin ⁡ π ν {\rm Wronski}[J_{\nu},w_2]={\rm Wronski}[J_{\nu},c_2J_{-\nu}]=-\frac{2c_2}{\pi{z}}\sin\pi\nu Wronski[Jν,w2]=Wronski[Jν,c2Jν]=πz2c2sinπν

c 2 = − 1 sin ⁡ π ν c_2=-\cfrac{1}{\sin\pi\nu} c2=sinπν1 ,Wronski 行列式就非零,找到了线性无关的第二解:

w 2 ( z ) = c J ν ( z ) − J − ν ( z ) sin ⁡ π ν w_2(z)=\frac{cJ_{\nu}(z)-J_{-\nu}(z)}{\sin\pi\nu} w2(z)=sinπνcJν(z)Jν(z)

考虑到 J − n ( z ) = ( − 1 ) n J n ( z ) J_{-n}(z)=(-1)^nJ_n(z) Jn(z)=(1)nJn(z) ,为了使 w 2 ( z ) w_2(z) w2(z) ν \nu ν 为整数也有意义,取 c = cos ⁡ π ν c=\cos\pi\nu c=cosπν 。这样就得到 Neumann 函数

N ν ( z ) ≡ cos ⁡ π ν J ν ( z ) − J − ν ( z ) sin ⁡ π ν N_\nu(z)\equiv\frac{\cos\pi\nu{J}_{\nu}(z)-J_{-\nu}(z)}{\sin\pi\nu} Nν(z)sinπνcosπνJν(z)Jν(z)

ν \nu ν 为整数 n n n

N n ( z ) = lim ⁡ ν → n N ν ( z ) = L ′ H 2 π J n ( z ) ln ⁡ z 2 − 1 π S 1 − 1 π S 2 S 1 = ∑ k = 0 n − 1 ( n − k − 1 ) ! k ! ( z 2 ) 2 k − n ( n ≥ 1 ) S 2 = ∑ k = 0 + ∞ ( − 1 ) k k ! ( k + n ) ! ( ψ ( n + k + 1 ) + ψ ( k + 1 ) ) ( z 2 ) 2 k + n \begin{aligned} N_{n}(z)&=\lim_{\nu\to{n}}N_{\nu}(z)\overset{L'H}{=}\frac{2}{\pi}J_n(z)\ln\frac{z}{2}-\frac{1}{\pi}S_1-\frac{1}{\pi}S_2\\ S_1&=\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}\left(\frac{z}{2}\right)^{2k-n}\quad(n\geq{1})\\ S_2&=\sum_{k=0}^{+\infty}\frac{(-1)^k}{k!(k+n)!}\Big(\psi(n+k+1)+\psi(k+1)\Big)\left(\frac{z}{2}\right)^{2k+n} \end{aligned} Nn(z)S1S2=νnlimNν(z)=LHπ2Jn(z)ln2zπ1S1π1S2=k=0n1k!(nk1)!(2z)2kn(n1)=k=0+k!(k+n)!(1)k(ψ(n+k+1)+ψ(k+1))(2z)2k+n

ψ \psi ψ Γ \Gamma Γ 函数的对数微分。

Bessel 函数和 Neumann 函数的性质

零点和渐近特性

在这里插入图片描述

在这里插入图片描述

除了 J 0 ( 0 ) = 1 J_0(0)=1 J0(0)=1 以外 J ν ( 0 ) = 0 J_{\nu}(0)=0 Jν(0)=0
N ν ( 0 ) N_{\nu}(0) Nν(0) 全部发散。
这样,如果实际问题要求 u ∣ r = 0 u|_{r=0} ur=0 有界(很常见),边值问题解的径向部分就只含有 { J ν ( x ) } \{J_{\nu}(x)\} {Jν(x)}

事实上可以证明

J ν ( z ) = 1 Γ ( ν + 1 ) ( z 2 ) ν + O ( z ν + 2 ) ( z → 0 ) J ν ( z ) ∼ 2 π z cos ⁡ ( z − ν π 2 − π 4 ) ( z → ∞ ) N ν ( z ) ∼ − Γ ( ν ) π ( z 2 ) − ν ( z → 0 ) N ν ( z ) ∼ 2 π z sin ⁡ ( z − ν π 2 − π 4 ) ( z → ∞ ) \begin{aligned} J_{\nu}(z)&=\frac{1}{\Gamma(\nu+1)}\left(\frac{z}{2}\right)^{\nu}+O(z^{\nu+2})&\quad(z\to{0})\\ J_{\nu}(z)&\sim\sqrt{\frac{2}{\pi{z}}}\cos\left(z-\frac{\nu\pi}{2}-\frac{\pi}{4}\right)&\quad(z\to\infty)\\ N_{\nu}(z)&\sim-\frac{\Gamma(\nu)}{\pi}\left(\frac{z}{2}\right)^{-\nu}&\quad(z\to{0})\\ N_{\nu}(z)&\sim\sqrt{\frac{2}{\pi{z}}}\sin\left(z-\frac{\nu\pi}{2}-\frac{\pi}{4}\right)&\quad(z\to\infty) \end{aligned} Jν(z)Jν(z)Nν(z)Nν(z)=Γ(ν+1)1(2z)ν+O(zν+2)πz2 cos(z2νπ4π)πΓ(ν)(2z)νπz2 sin(z2νπ4π)(z0)(z)(z0)(z)

特别地有 N 0 ( x ) ∼ 2 π ln ⁡ x 2 N_0(x)\sim\cfrac{2}{\pi}\ln\cfrac{x}{2} N0(x)π2ln2x 。它在 x = 0 x=0 x=0 也发散。

多值性

约定 J ν , N ν J_{\nu},N_{\nu} Jν,Nν 的定义

J ν ( z ) = ∑ k = 0 + ∞ ( − 1 ) k k ! Γ ( k + ν + 1 ) ( z 2 ) 2 k + ν N ν ( z ) = cos ⁡ π ν J ν ( z ) − J − ν ( z ) sin ⁡ π ν \begin{aligned} J_{\nu}(z)&=\sum_{k=0}^{+\infty}\frac{(-1)^k}{k!\Gamma(k+\nu+1)}\left(\frac{z}{2}\right)^{2k+\nu}\\ N_\nu(z)&=\frac{\cos\pi\nu{J}_{\nu}(z)-J_{-\nu}(z)}{\sin\pi\nu} \end{aligned} Jν(z)Nν(z)=k=0+k!Γ(k+ν+1)(1)k(2z)2k+ν=sinπνcosπνJν(z)Jν(z)

只适用于 ∣ arg ⁡ z ∣ < π |\arg{z}|<\pi argz<π 范围。

递推关系

d d z [ z ν J ν ( z ) ] = z ν J ν − 1 ( z ) ( 1 ) d d z [ z − ν J ν ( z ) ] = − z − ν J ν + 1 ( z ) ( 2 ) \begin{aligned} &\frac{{\rm d}}{{\rm d}z}\left[z^{\nu}J_{\nu}(z)\right]=z^{\nu}J_{\nu-1}(z)&\quad(1)\\ &\frac{{\rm d}}{{\rm d}z}\left[z^{-\nu}J_{\nu}(z)\right]=-z^{-\nu}J_{\nu+1}(z)&\quad(2) \end{aligned} dzd[zνJν(z)]=zνJν1(z)dzd[zνJν(z)]=zνJν+1(z)(1)(2)

利用 Bessel 函数的级数展开可以验证。级数在全平面收敛,从而可以逐项求导

d d z J ν ( z ) = d d z ∑ k = 0 + ∞ ( − 1 ) k Γ ( k + ν + 1 ) ( z 2 ) 2 k + ν z ν = ∑ k = 0 + ∞ ( − 1 ) k Γ ( k + ν ) ( z 2 ) 2 k + ( ν − 1 ) z ν = z ν J ν − 1 ( z ) \begin{aligned} \frac{\rm d}{{\rm d}z}J_{\nu}(z)&=\frac{\rm d}{{\rm d}z}\sum_{k=0}^{+\infty}\frac{(-1)^k}{\Gamma(k+\nu+1)}\left(\frac{z}{2}\right)^{2k+\nu}z^{\nu}\\ &=\sum_{k=0}^{+\infty}\frac{(-1)^k}{\Gamma(k+\nu)}\left(\frac{z}{2}\right)^{2k+(\nu-1)}z^{\nu}\\ &=z^{\nu}J_{\nu-1}(z) \end{aligned} dzdJν(z)=dzdk=0+Γ(k+ν+1)(1)k(2z)2k+νzν=k=0+Γ(k+ν)(1)k(2z)2k+(ν1)zν=zνJν1(z)

将左边的微分项打开,得到 J ν ′ , J ν , J ν ± 1 J_{\nu}',J_{\nu},J_{\nu\pm{1}} Jν,Jν,Jν±1 之间的两个递推关系。分别消去 J ν J_{\nu} Jν J ν ′ J_{\nu}' Jν 就得到

J ν − 1 ( z ) − J ν + 1 ( z ) = 2 J ν ′ ( z ) ( 3 ) J ν − 1 ( z ) + J ν + 1 ( z ) = 2 ν z J ν ( z ) ( 4 ) \begin{aligned} J_{\nu-1}(z)-J_{\nu+1}(z)&=2J_{\nu}'(z)&\quad(3)\\ J_{\nu-1}(z)+J_{\nu+1}(z)&=\frac{2\nu}{z}J_{\nu}(z)&\quad(4) \end{aligned} Jν1(z)Jν+1(z)Jν1(z)+Jν+1(z)=2Jν(z)=z2νJν(z)(3)(4)

  • 任意整数阶的 Bessel 函数 J n ( z ) J_n(z) Jn(z) 都可以用 J 0 , J 1 J_0,J_1 J0,J1 表出。
    例如 J 0 ′ ( z ) = − J 1 ( z ) J_0'(z)=-J_1(z) J0(z)=J1(z)
  • 递推关系 ( 1 ) , ( 2 ) (1),(2) (1),(2) 适合用于计算形如 ∫ x a J ν ( x ) d x \int{x}^aJ_{\nu}(x){\rm d}x xaJν(x)dx 的积分。

类似地可以验证, Neumann 函数也有一样的递推关系

d d z [ z ν N ν ( z ) ] = z ν N ν − 1 ( z ) d d z [ z − ν N ν ( z ) ] = − z − ν N ν + 1 ( z ) \begin{aligned} &\frac{{\rm d}}{{\rm d}z}\left[z^{\nu}N_{\nu}(z)\right]=z^{\nu}N_{\nu-1}(z)\\ &\frac{{\rm d}}{{\rm d}z}\left[z^{-\nu}N_{\nu}(z)\right]=-z^{-\nu}N_{\nu+1}(z) \end{aligned} dzd[zνNν(z)]=zνNν1(z)dzd[zνNν(z)]=zνNν+1(z)

柱函数

满足递推关系

d d z [ z ν C ν ( z ) ] = z ν C ν − 1 ( z ) d d z [ z − ν C ν ( z ) ] = − z − ν C ν + 1 ( z ) \begin{aligned} &\frac{\rm d}{{\rm d}z}\left[z^\nu{C}_\nu(z)\right]=z^{\nu}C_{\nu-1}(z)\\ &\frac{\rm d}{{\rm d}z}\left[z^{-\nu}C_{\nu}(z)\right]=-z^{-\nu}C_{\nu+1}(z) \end{aligned} dzd[zνCν(z)]=zνCν1(z)dzd[zνCν(z)]=zνCν+1(z)
C ν ( z ) C_{\nu}(z) Cν(z) 称为 柱函数 。可以证明柱函数一定是对应阶 Bessel 方程的解。

  • Bessel 函数 J ν ( z ) J_{\nu}(z) Jν(z) 称为 第一类柱函数
  • Neumann 函数 N ν ( z ) N_{\nu}(z) Nν(z) 称为 第二类柱函数
  • Hankel 函数 H ν ( z ) H_{\nu}(z) Hν(z) 称为 第三类柱函数

J ν ( z ) ∼ 2 π z cos ⁡ ( z − ν π 2 − π 4 ) N ν ( z ) ∼ 2 π z sin ⁡ ( z − ν π 2 − π 4 ) H ν ( 1 ) ( z ) ≡ J ν ( z ) + i N ν ( z ) ∼ 2 π z e i ( z − ν π 2 − π 4 ) H ν ( 2 ) ( z ) ≡ J ν ( z ) − i N ν ( z ) ∼ 2 π z e − i ( z − ν π 2 − π 4 ) \begin{aligned} J_{\nu}(z)&\sim\sqrt{\frac{2}{\pi{z}}}\cos\left(z-\frac{\nu\pi}{2}-\frac{\pi}{4}\right)\\ N_{\nu}(z)&\sim\sqrt{\frac{2}{\pi{z}}}\sin\left(z-\frac{\nu\pi}{2}-\frac{\pi}{4}\right)\\ H_{\nu}^{(1)}(z)&\equiv{J}_{\nu}(z)+iN_{\nu}(z)\sim\sqrt{\frac{2}{\pi{z}}}e^{i\left(z-\frac{\nu\pi}{2}-\frac{\pi}{4}\right)}\\ H_{\nu}^{(2)}(z)&\equiv{J}_{\nu}(z)-iN_{\nu}(z)\sim\sqrt{\frac{2}{\pi{z}}}e^{-i\left(z-\frac{\nu\pi}{2}-\frac{\pi}{4}\right)}\\ \end{aligned} Jν(z)Nν(z)Hν(1)(z)Hν(2)(z)πz2 cos(z2νπ4π)πz2 sin(z2νπ4π)Jν(z)+iNν(z)πz2 ei(z2νπ4π)Jν(z)iNν(z)πz2 ei(z2νπ4π)

如果时间因子选为 e − i ω t e^{-i\omega{t}} eiωt , Hankel 函数 H ( 1 ) ( z ) , H ( 2 ) ( z ) H^{(1)}(z),H^{(2)}(z) H(1)(z),H(2)(z) 分别只包含 发散波汇聚波 成分。有时处理的问题中只包含发散波或汇聚波,或者希望明确区分这两种成分。使用 Hankel 函数在此时比较方便。

容易验证 Hankel 函数也满足以上递推关系和 Bessel 方程。

特殊的 Bessel 函数

整数阶 Bessel 函数

Bessel 方程的参数 μ = ν 2 \mu=\nu^2 μ=ν2 通常来自柱坐标系下角向的本征值问题

Θ ′ ′ + μ Θ = 0 Θ ( 0 ) = Θ ( 2 π ) ,   Θ ′ ( 0 ) = Θ ′ ( 2 π ) μ = m 2 ,   m = 0 , 1 , 2 , ⋯ \begin{aligned} &\Theta''+\mu\Theta=0\\ &\Theta(0)=\Theta(2\pi),\ \Theta'(0)=\Theta'(2\pi)\\ &\mu=m^2,\ m=0,1,2,\cdots \end{aligned} Θ+μΘ=0Θ(0)=Θ(2π), Θ(0)=Θ(2π)μ=m2, m=0,1,2,

所以整数阶 Bessel 函数值得特别介绍。

生成函数

exp ⁡ [ z 2 ( t − 1 t ) ] = ∑ n = − ∞ + ∞ J n ( z ) t n , 0 < ∣ t ∣ < ∞ \exp\left[\frac{z}{2}\left(t-\frac{1}{t}\right)\right]=\sum_{n=-\infty}^{+\infty}J_{n}(z)t^n,\quad0<|t|<\infty exp[2z(tt1)]=n=+Jn(z)tn,0<t<

t = i e i θ t=ie^{i\theta} t=ieiθ ,就得到

e i z cos ⁡ θ = ∑ n = − ∞ + ∞ J n ( z ) i n e i n θ = J 0 ( z ) + 2 ∑ n = 1 + ∞ i n J n ( z ) cos ⁡ n θ e^{iz\cos\theta}=\sum_{n=-\infty}^{+\infty}J_n(z)i^ne^{in\theta}=J_0(z)+2\sum_{n=1}^{+\infty}i^nJ_n(z)\cos{n\theta} eizcosθ=n=+Jn(z)ineinθ=J0(z)+2n=1+inJn(z)cosnθ

其中用到 i n J n ( z ) = i n ( − 1 ) n J − n ( z ) = i − n J − n ( z ) i^nJ_{n}(z)=i^{n}(-1)^nJ_{-n}(z)=i^{-n}J_{-n}(z) inJn(z)=in(1)nJn(z)=inJn(z)

进一步令 z = k r z=kr z=kr ,并取时间因子为 e − i ω t e^{-i\omega{t}} eiωt ,把 r , θ r,\theta r,θ 理解为柱坐标系中的坐标变量,上式的意义就是 单色平面波柱面波 展开。这是因为

  • e i ( k r cos ⁡ θ − ω t ) e^{i(kr\cos\theta-\omega{t})} ei(krcosθωt) 的等相面是

k r cos ⁡ θ ≡ k e ^ x ⋅ r = c o n s t . kr\cos\theta\equiv{k}\boldsymbol{\hat e}_x\cdot\boldsymbol{r}={\rm const.} krcosθke^xr=const.

这是沿 x x x 轴正方向传播的平面波。

  • 利用渐近关系看出 J n ( k r ) J_n(kr) Jn(kr) 表示的确实是柱面波:

J n ( k r ) ∼ 2 π k r cos ⁡ ( k r − n π 2 − π 4 ) J_{n}(kr)\sim\sqrt{\frac{2}{\pi{kr}}}\cos\left(kr-\frac{n\pi}{2}-\frac{\pi}{4}\right) Jn(kr)πkr2 cos(kr2nπ4π)
等相面 k r = k ⋅ r = c o n s t . kr=\boldsymbol{k}\cdot\boldsymbol{r}={\rm const.} kr=kr=const.

积分表示

t = e i θ t=e^{i\theta} t=eiθ 代入就得到

e i z sin ⁡ θ = ∑ n = − ∞ + ∞ J n ( z ) e i n θ e^{iz\sin\theta}=\sum_{n=-\infty}^{+\infty}J_{n}(z)e^{in\theta} eizsinθ=n=+Jn(z)einθ
表明 J n ( z ) J_n(z) Jn(z) e i z sin ⁡ θ e^{iz\sin\theta} eizsinθ Fourier 分量 e i n θ e^{in\theta} einθ 的展开系数

利用 Fourier 系数的定义有

J n ( z ) = 1 2 π ∫ − π π e i z sin ⁡ θ e − i n θ d θ J_n(z)=\frac{1}{2\pi}\int_{-\pi}^{\pi}e^{iz\sin\theta}e^{-in\theta}{\rm d}\theta Jn(z)=2π1ππeizsinθeinθdθ
被积函数是复的,但虚部是奇函数,只有实部对结果有贡献。这样就得到 Bessel 函数的积分表示

J n ( z ) = 1 π ∫ 0 π cos ⁡ ( z sin ⁡ θ − n θ ) d θ J_{n}(z)=\frac{1}{\pi}\int_{0}^{\pi}\cos(z\sin\theta-n\theta){\rm d}\theta Jn(z)=π10πcos(zsinθnθ)dθ

利用这个结果可以方便地计算 J n ( x ) J_{n}(x) Jn(x) 的 Laplace 变换。

虚宗量 Bessel 函数

Helmholtz 方程在 k = 0 k=0 k=0 时变为 Laplace 方程。径向问题的方程是

1 r d d r ( r d R ( r ) d r ) + ( k 2 − λ − μ r 2 ) R ( r ) = 0 \frac{1}{r}\frac{{\rm d}}{{\rm d}r}\left(r\frac{{\rm d}R(r)}{{\rm d}r}\right)+\left(k^2-\lambda-\frac{\mu}{r^2}\right)R(r)=0 r1drd(rdrdR(r))+(k2λr2μ)R(r)=0

k = 0 k=0 k=0 时令 x = i λ r x=i\sqrt{\lambda}r x=iλ r R ( r ) ≡ y ( x ) R(r)\equiv{y}(x) R(r)y(x) 就再次得到 Bessel 方程

1 x d d x ( x d d x y ( x ) ) + ( 1 − ν 2 x 2 ) y ( x ) = 0 \frac{1}{x}\frac{{\rm d}}{{\rm d}x}\left(x\frac{\rm d}{{\rm d}x}y(x)\right)+\left(1-\frac{\nu^2}{x^2}\right)y(x)=0 x1dxd(xdxdy(x))+(1x2ν2)y(x)=0
其中 μ = ν 2 \mu=\nu^2 μ=ν2

这表明 Laplace 径向问题的解为

R ( r ) = c J ν ( i λ r ) + d N ν ( i λ r ) R(r)=cJ_{\nu}(i\sqrt{\lambda}r)+dN_{\nu}(i\sqrt{\lambda}r) R(r)=cJν(iλ r)+dNν(iλ r)
注意到柱函数的宗量都是纯虚数。另一方面,计算

J ν ( i x ) = ∑ k = 0 + ∞ ( − 1 ) k k ! Γ ( k + ν + 1 ) ( i x 2 ) 2 k + ν = ∑ k = 0 + ∞ i ν Γ ( k + ν + 1 ) ( x 2 ) 2 k + ν J_{\nu}(ix)=\sum_{k=0}^{+\infty}\frac{(-1)^k}{k!\Gamma(k+\nu+1)}\left(\frac{ix}{2}\right)^{2k+\nu}=\sum_{k=0}^{+\infty}\frac{i^\nu}{\Gamma(k+\nu+1)}\left(\frac{x}{2}\right)^{2k+\nu} Jν(ix)=k=0+k!Γ(k+ν+1)(1)k(2ix)2k+ν=k=0+Γ(k+ν+1)iν(2x)2k+ν

i ν i^{\nu} iν 应该理解为 e i π ν / 2 e^{i\pi\nu/2} eiπν/2 ,下同。

方便起见,定义 I ν ( x ) ≡ i − ν J ν ( i x ) I_{\nu}(x)\equiv{i}^{-\nu}J_{\nu}(ix) Iν(x)iνJν(ix) ,称为 第一类虚宗量 Bessel 函数 。它是 虚宗量 Bessel 方程 的解:

1 x d d x ( x d d x y ( x ) ) + ( − 1 − ν 2 x 2 ) y ( x ) = 0 \frac{1}{x}\frac{{\rm d}}{{\rm d}x}\left(x\frac{\rm d}{{\rm d}x}y(x)\right)+\left(-1-\frac{\nu^2}{x^2}\right)y(x)=0 x1dxd(xdxdy(x))+(1x2ν2)y(x)=0

经过类似的讨论可以知道 I ± ν ( x ) I_{\pm\nu}(x) I±ν(x) ν ∉ Z \nu\notin\mathbb{Z} ν/Z 时线性无关,而

I − n ( x ) = i n J − n ( i x ) = i − n J n ( i x ) = I n ( x ) I_{-n}(x)=i^{n}J_{-n}(ix)=i^{-n}J_n(ix)=I_n(x) In(x)=inJn(ix)=inJn(ix)=In(x)

此处用到 J − n ( z ) = ( − 1 ) n J n ( z ) J_{-n}(z)=(-1)^nJ_n(z) Jn(z)=(1)nJn(z)

虚宗量 Bessel 方程的第二解可以取为 McDonald 函数

K ν ( x ) = π sin ⁡ π ν [ I − ν ( x ) − I ν ( x ) ] K_{\nu}(x)=\frac{\pi}{\sin\pi\nu}\Big[I_{-\nu}(x)-I_{\nu}(x)\Big] Kν(x)=sinπνπ[Iν(x)Iν(x)]
它也叫 第二类虚宗量 Bessel 函数 ν \nu ν 为整数时它(在极限的意义上)依然有定义。利用 Wronski 行列式的方法可以类似地说明它和 I ± n ( x ) I_{\pm{n}}(x) I±n(x) 线性无关。

渐近行为

在这里插入图片描述

可以证明

∣ I ν ( 0 ) ∣ < ∞ K ν ( 0 )   发散 I ν ( x ) ∼ 1 2 π x e x K ν ( x ) ∼ π 2 x e − x \begin{aligned} &|I_{\nu}(0)|<\infty\\ &K_{\nu}(0)\,\text{发散}\\ &I_{\nu}(x)\sim\sqrt{\frac{1}{2\pi{x}}}e^{x}\\ &K_{\nu}(x)\sim\sqrt{\frac{\pi}{2x}}e^{-x} \end{aligned} Iν(0)<Kν(0)发散Iν(x)2πx1 exKν(x)2xπ ex

应用举例

柱坐标系下的 Laplace 边值问题

∇ 2 u = 0 u ∣ θ = 0 = u ∣ θ = 2 π , ∂ u ∂ θ ∣ θ = 0 = ∂ u ∂ θ ∣ θ = 2 π u ∣ z = 0 = 0 , u ∣ z = h = 0 u ∣ r = 0   有界 , u ∣ r = a = f ( θ , z ) \begin{aligned} &\nabla^2u=0\\ &u\big|_{\theta=0}=u\big|_{\theta=2\pi},&\qquad\frac{\partial{u}}{\partial{\theta}}\Big|_{\theta=0}=\frac{\partial{u}}{\partial{\theta}}\Big|_{\theta=2\pi}\\ &u\big|_{z=0}=0,\qquad&u\big|_{z=h}=0\\ &u\big|_{r=0}\,\text{有界},\qquad&u\big|_{r=a}=f(\theta,z) \end{aligned} 2u=0uθ=0=uθ=2π,uz=0=0,ur=0有界,θuθ=0=θuθ=2πuz=h=0ur=a=f(θ,z)

的一般解为

u ( r , θ , z ) = ∑ m = 0 + ∞ ∑ n = 1 + ∞ ( A m n cos ⁡ m θ + B m n sin ⁡ m θ ) I m ( n π h r ) sin ⁡ ( n π h z ) u(r,\theta,z)=\sum_{m=0}^{+\infty}\sum_{n=1}^{+\infty}(A_{mn}\cos{m\theta}+B_{mn}\sin{m\theta})I_m\left(\frac{n\pi}{h}r\right)\sin\left(\frac{n\pi}{h}z\right) u(r,θ,z)=m=0+n=1+(Amncosmθ+Bmnsinmθ)Im(hnπr)sin(hnπz)

半奇数阶 Bessel 函数

由于 J ± 1 / 2 J_{\pm{1/2}} J±1/2 是初等函数:

J 1 / 2 ( z ) = 2 π z sin ⁡ z J − 1 / 2 ( z ) = 2 π z cos ⁡ z \begin{aligned} J_{1/2}(z)&=\sqrt{\frac{2}{\pi{z}}}\sin{z}\\ J_{-1/2}(z)&=\sqrt{\frac{2}{\pi{z}}}\cos{z} \end{aligned} J1/2(z)J1/2(z)=πz2 sinz=πz2 cosz

利用递推关系就推出: 所有半奇数阶的 Bessel 函数都是初等函数 。而所有半奇数阶 Neumann 函数事实上都可以写成半奇数阶 Bessel 函数。

半奇数阶 Bessel 函数的意义并不只在此,它还在球 Bessel 函数中有应用。

球 Bessel 函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值