01 数学基础
目录
矢量的引入
- 一个矢量 A \boldsymbol{A} A 是矢量空间中的一个元素。在选取了一组基矢 { e ^ i } \{\boldsymbol{\hat e}_i\} { e^i} 之后,可以用它的各个分量 A i = A i e ^ i \boldsymbol{A}_i=A^i\boldsymbol{\hat e}_i Ai=Aie^i 来代表它。
向量空间上有加法和数乘。其中加法满足交换律、结合律并存在零元 0 \boldsymbol{0} 0 和逆元 − x -\boldsymbol{x} −x ,数乘满足左右交换律、结合律并存在幺元 1 1 1 。
- 对于矢量空间 V \mathcal{V} V ,如果存在一组线性无关的向量 { e ^ i } \{\boldsymbol{\hat e}_i\} { e^i} 使得 ∀ x ∈ V \forall\boldsymbol{x}\in\mathcal{V} ∀x∈V 都可以被线性表出为
x = ∑ i = 1 3 x i e ^ i \boldsymbol{x}=\sum_{i=1}^3x^i\boldsymbol{\hat e}_i x=i=1∑3xie^i
就称 { e ^ i } \{\boldsymbol{\hat e}_i\} {
e^i} 是 V \mathcal{V} V 的一组 (协变)基 ,基的每一个向量 e ^ i \boldsymbol{\hat e}_i e^i 都称为 (协变)基向量 , x i x^i xi 称为向量 x \boldsymbol{x} x 在 e ^ i \boldsymbol{\hat e}_i e^i 方向上的 (逆变)分量 。
注意它们分别被冠以下标和上标。这一记法是有意义的。
- 电动力学用到的三维空间矢量都具有三个分量,它所属的矢量空间是三维欧氏空间。在这个三维空间中,基矢的选取有任意性。任意两组正交归一的基矢之间只相差一个 正交变换(幺正变换)。如果记变换矩阵为 R = ( R i j ) 3 × 3 \boldsymbol{R}=(R_{ij})_{3\times 3} R=(Rij)3×3 ,那么这种变换满足:
∑ j = 1 3 R i j R k j = δ i k = ∑ j = 1 3 R j i R j k R R T = I = R T R \begin{aligned} \sum_{j=1}^3R_{ij}R_{kj}&=\delta_{ik}=\sum_{j=1}^3R_{ji}R_{jk}\\ \boldsymbol{R}\boldsymbol{R}^T&=\boldsymbol{I}=\boldsymbol{R}^T\boldsymbol{R} \end{aligned} j=1∑3RijRkjRRT=δik=j=1∑3RjiRjk=I=RTR
上述变换性质会在后面说明,变换的细节也会得到讨论。
矢量的内积和外积
- 向量空间是内积空间,如果可以定义这样一种内积运算 V × V → R : ( u , v ) ↦ u ∗ v \mathcal{V}\times\mathcal{V}\rightarrow\mathbb{R}:(\boldsymbol{u},\boldsymbol{v})\mapsto\boldsymbol{u}*\boldsymbol{v} V×V→R:(u,v)↦u∗v ,满足
- 交换律 u ∗ v = v ∗ u \boldsymbol{u}*\boldsymbol{v}=\boldsymbol{v}*\boldsymbol{u} u∗v=v∗u
- 双线性 u ∗ ( α v + β w ) = α u ∗ v + β u ∗ w \boldsymbol{u}*(\alpha\boldsymbol{v}+\beta\boldsymbol{w})=\alpha\boldsymbol{u}*\boldsymbol{v}+\beta\boldsymbol{u}*\boldsymbol{w} u∗(αv+βw)=αu∗v+βu∗w
- 正定性 u ∗ u ≥ 0 \boldsymbol{u}*\boldsymbol{u}\geq0 u∗u≥0 ,取等 ⟺ x = 0 \iff\boldsymbol{x}=\boldsymbol{0} ⟺x=0 。
点积 u ⋅ v = u i v i \boldsymbol{u}\cdot\boldsymbol{v}=u^iv^i u⋅v=uivi 是一种内积。
- 设 { e ^ i } \{\boldsymbol{\hat e}_i\} { e^i} 是内积空间 V \mathcal{V} V 的协变基,对称矩阵 G = ( g i j ) 3 × 3 ≜ ( e ^ i ∗ e ^ j ) 3 × 3 G=(g_{ij})_{3\times3}\triangleq(\boldsymbol{\hat e}_i*\boldsymbol{\hat e}_j)_{3\times3} G=(gij)3×3≜(e^i∗e^j)3×3 中的元素 g i j g_{ij} gij 称为 度量矩阵 的 协变分量 。显然,这样的矩阵 G G G 由定义的内积运算唯一确定。利用这些协变分量可以(1)表示点积、(2)定义向量长度、(3)表示两向量夹角的余弦
u ⋅ v = ( u i e ^ i ) ( v j e ^ j ) = g i j u i v j ∣ u ∣ = u ⋅ u = g i j u i u j cos θ = u ⋅ v ∣ u ∣ ⋅ ∣ v ∣ = g i j u i v j g k l u k u l g r s u r u s \begin{aligned} &\boldsymbol{u}\cdot\boldsymbol{v}=(u^i\boldsymbol{\hat e}_i)(v^j\boldsymbol{\hat e}_j)=g_{ij}u^iv^j\\ &|\boldsymbol{u}|=\sqrt{\boldsymbol{u}\cdot\boldsymbol{u}}=\sqrt{g_{ij}u^iu^j}\\ &\cos\theta=\frac{\boldsymbol{u}\cdot\boldsymbol{v}}{|\boldsymbol{u}|\cdot|\boldsymbol{v}|}=\frac{g_{ij}u^iv^j}{\sqrt{g_{kl}u^ku^l}\sqrt{g_{rs}u^ru^s}} \end{aligned} u⋅v=(uie^i)(vje^j)=gijuivj∣u∣=u⋅u=gijuiujcosθ=∣u∣⋅∣v∣u⋅v=gklukulgrsurusgijuivj
“度量张量”之“度量”就是确定向量的长度。
另外,上述的讨论表明, G G G 是一个对称正定矩阵,从而满秩。
- 称 { e ^ j } \{\boldsymbol{\hat e}^j\} { e^j} 为向量空间 V \mathcal{V} V 的 逆变基 、 V \mathcal{V} V 之协变基 { e ^ i } \{\boldsymbol{\hat e}_i\} { e^i} 的 对偶基 ,如果 e ^ j ⋅ e ^ i = δ i j = { 1 , i = j 0 , i ≠ j \boldsymbol{\hat e}^j\cdot\boldsymbol{\hat e}_i=\delta_i^j=\begin{cases}1,\quad{i=j}\\0,\quad{i\neq j}\end{cases} e^j⋅e^i=δij={ 1,i=j0,i=j 。 δ i j \delta_i^j δij 称为 Krönecker 符号,也记为 δ i j \delta_{ij} δij 这种更对称的形式。考虑 { e ^ j } \{\boldsymbol{\hat e}^j\} { e^j} 在 { e ^ i } \{\boldsymbol{\hat e}_i\} { e^i} 上的分解 e ^ j = g j i e ^ i \boldsymbol{\hat e}^j=g^{ji}\boldsymbol{\hat e}_i e^j=gjie^i ,只需根据定义检查 e ^ j ⋅ e ^ i \boldsymbol{\hat e}^j\cdot\boldsymbol{\hat e}_i e^j⋅e^i 就可以知道 这组 { e ^ j } \{\boldsymbol{\hat e}^j\} { e^j} 被 { e ^ i } \{\boldsymbol{\hat e}_i\} { e^i} 唯一确定,且矩阵 ( g j i ) 3 × 3 (g^{ji})_{3\times3} (gji)3×3 正是 G G G 的逆 。 G G G 可逆,于是对于给定的协变基存在唯一的逆变基。
G − 1 G^{-1} G−1 也是对称矩阵。
-
进一步可以发现,指标的“上”、“下”,称呼的“协变”、“逆变”,两组基其实是平等关系。我们称 e ^ i \boldsymbol{\hat e}_i e^i 和 e ^ j \boldsymbol{\hat e}^j e^j 互为 对偶基 ,或互为 共基 。 g j i g^{ji} gji 称为度量张量的 逆变分量 。
-
任意矢量也可以由逆变基表出: u = u i e ^ i , v = v j e ^ j \boldsymbol{u}=u_i\boldsymbol{\hat e}^i,\boldsymbol{v}=v_j\boldsymbol{\hat e}^j u=uie^i,v=vje^j 。于是我们有 u i = u ⋅ e ^ i , u j = u ⋅ e ^ j u^i=\boldsymbol{u}\cdot\boldsymbol{\hat e}^i,u_j=\boldsymbol{u}\cdot\boldsymbol{\hat e}_j ui=u⋅e^i,uj=u⋅e^j ,整理就得到 u = u i e ^ i = u j g i j e ^ i = u i e ^ i = u j g i j e ^ i \boldsymbol{u}=u^i\boldsymbol{\hat e}_i=u^jg_{ij}\boldsymbol{\hat e}^i=u_i\boldsymbol{\hat e}^i=u_jg^{ij}\boldsymbol{\hat e}_i u=uie^i=ujgije^i=uie^i=ujgije^i 。基是线性无关向量组,所以
u i = g i j u j u i = g i j u j \begin{aligned} &u_i=g_{ij}u^j&\\ &u^i=g^{ij}u_j& \end{aligned} ui=gijujui=gijuj
联系同一矢量 u \boldsymbol{u} u 两种分量的是度量张量的有关分量,这些分量起到升降指标的作用。
矢量的多重积和混合积
-
混合积
A ⋅ ( B × C ) = B ⋅ ( C × A ) = C ⋅ ( A × B ) \boldsymbol{A}\cdot(\boldsymbol{B}\times\boldsymbol{C})=\boldsymbol{B}\cdot(\boldsymbol{C}\times\boldsymbol{A})=\boldsymbol{C}\cdot(\boldsymbol{A}\times\boldsymbol{B}) A⋅(B×C)=B⋅(C×A)=C⋅(A×B) -
连续外积
A × B × C = B ( A ⋅ C ) − C ( A ⋅ B ) \boldsymbol{A}\times\boldsymbol{B}\times\boldsymbol{C}=\boldsymbol{B}(\boldsymbol{A}\cdot\boldsymbol{C})-\boldsymbol{C}(\boldsymbol{A}\cdot\boldsymbol{B}) A×B×C=B(A⋅C)−C(A⋅B) -
(利用1)
( A × B ) ⋅ ( C × D ) = ( A ⋅ C ) ( B ⋅ D ) − ( A ⋅ D ) ( B ⋅ C ) (\boldsymbol{A}\times\boldsymbol{B})\cdot(\boldsymbol{C}\times\boldsymbol{D})=(\boldsymbol{A}\cdot\boldsymbol{C})(\boldsymbol{B}\cdot\boldsymbol{D})-(\boldsymbol{A}\cdot\boldsymbol{D})(\boldsymbol{B}\cdot\boldsymbol{C}) (A×B)⋅(C×D)=(A⋅C)(B⋅D)−(A⋅D)(B⋅C)
注意相似性: ε i j k ε k l m = δ i l δ j m − δ i m δ j l \varepsilon_{ijk}\varepsilon_{klm}=\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl} εijkεklm=δilδjm−δimδjl
- (利用2)
A × [ B × ( C × D ) ] = B [ A ⋅ ( C × D ) ] − ( C × D ) ( A ⋅ B ) \boldsymbol{A}\times[\boldsymbol{B}\times(\boldsymbol{C}\times\boldsymbol{D})]=\boldsymbol{B}[\boldsymbol{A}\cdot(\boldsymbol{C}\times\boldsymbol{D})]-(\boldsymbol{C}\times\boldsymbol{D})(\boldsymbol{A}\cdot\boldsymbol{B}) A×[B×(C×D)]=B[A⋅(C×D)]−(C×D)(A⋅B)
一些记号和表示的约定
爱因斯坦求和表示
重复的指标意味着(对该指标)求和,而省去求和符号。
例如:
A = A 1 e ^ 1 + A 2 e ^ 2 + A 3 e ^ 3 = ∑ i A i e ^ i ≜ A i e ^ i \boldsymbol{A}=A_1{\boldsymbol{\hat e}}_1+A_2{\boldsymbol{\hat e}}_2+A_3{\boldsymbol{\hat e}}_3=\sum_iA_i{\boldsymbol{\hat e}}_i\triangleq A_i{\boldsymbol{\hat e}}_i A=A1e^1+A2e^2+A3e^3=i∑Aie^i≜Aie^i
又如:
∇ = ∂ ∂ x 1 e ^ 1 + ∂ ∂ x 2 e ^ 2 + ∂ ∂ x 3 e ^ 3 ≡ ∂ ∂ x i e ^ i ≡ ∂ i e ^ i \nabla=\frac{\partial}{\partial x_1}{\boldsymbol{\hat e}}_1+\frac{\partial}{\partial x_2}{\boldsymbol{\hat e}}_2+\frac{\partial}{\partial x_3}{\boldsymbol{\hat e}}_3\equiv\frac{\partial}{\partial x_i}{\boldsymbol{\hat e}}_i\equiv\partial_i{\boldsymbol{\hat e}}_i ∇=∂x1∂e^1+∂x2∂e^2+∂x3∂e^3≡∂xi∂e^i≡∂ie^i
不重复的指标称为 取值指标 、 自由指标 ,重复的指标称为 哑指标 。哑指标可以任意代换: u i v i = u j v j u_iv_i=u_jv_j uivi=ujvj 。今后指标还会包括上标。例如, E i j k l ε k l E^{ijkl}\varepsilon_{kl} Eijklεkl 中的哑指标是 k , l k,l k,l 。
三阶完全反对称单位张量 ε i j k \varepsilon_{ijk} εijk
定义 ε i j k \varepsilon_{ijk} εijk :
ε i j k ≜ ∣ δ 1 i δ 1 j δ 1 k δ 2 i δ 2 j δ 2 k δ 3 i δ 3 j δ 3 k ∣ = ∣ δ 1 i δ 2 i δ 3 i δ 1 j δ 2 j δ 3 j δ 1 k δ 2 k δ 3 k ∣ (转置) \varepsilon_{ijk}\triangleq \begin{vmatrix} \delta_{1i} & \delta_{1j} & \delta_{1k}\\ \delta_{2i} & \delta_{2j} & \delta_{2k}\\ \delta_{3i} & \delta_{3j} & \delta_{3k} \end{vmatrix}= \begin{vmatrix} \delta_{1i} & \delta_{2i} & \delta_{3i}\\ \delta_{1j} & \delta_{2j} & \delta_{3j}\\ \delta_{1k} & \delta_{2k} & \delta_{3k} \end{vmatrix}\text{(转置)} εijk≜∣∣∣∣∣∣δ1iδ2iδ3iδ1jδ2jδ3jδ1kδ2kδ3k∣∣∣∣∣∣=∣∣∣∣∣∣δ1iδ1jδ1kδ2iδ2jδ2kδ3iδ3jδ3k∣∣∣∣∣∣(转置)
也即, ε i j k = { 1 , (ijk)为(123)的偶排列 − 1 , (ijk)为(123)的奇排列 0 , else \varepsilon_{ijk}=\begin{cases}1,\quad&\text{(ijk)为(123)的偶排列}\\-1,\quad&\text{(ijk)为(123)的奇排列}\\0,\quad&\text{else}\end{cases} εijk=⎩⎪⎨⎪⎧1,−1,0,(ijk)为(123)的偶排列(ijk)为(123)的奇排列else 。
性质和应用
- 表示单位向量的内积和外积
e ^ i ⋅ e ^ j = δ i j e ^ i × e ^ j = ε i j k e ^ k ≡ e ^ k ε k i j \begin{aligned} {\boldsymbol{\hat e}}_i\cdot{\boldsymbol{\hat e}}_j&=\delta_{ij}\\ {\boldsymbol{\hat e}}_i\times{\boldsymbol{\hat e}}_j&=\varepsilon_{ijk}{\boldsymbol{\hat e}}_k\equiv{\boldsymbol{\hat e}}_k\varepsilon_{kij} \end{aligned} e^i⋅e^je^i×e^j=δij=εijke^k≡e^

本文介绍了矢量和张量的基础知识,包括矢量的表示、内积与外积、多重积与混合积等内容,并详细讲解了张量的概念、性质及运算规则。此外还讨论了坐标变换对矢量和张量的影响。
最低0.47元/天 解锁文章
658

被折叠的 条评论
为什么被折叠?



