一小时电动力学 01 数学基础

01 数学基础

目录


矢量的引入

  • 一个矢量 A \boldsymbol{A} A 是矢量空间中的一个元素。在选取了一组基矢 { e ^ i } \{\boldsymbol{\hat e}_i\} {e^i} 之后,可以用它的各个分量 A i = A i e ^ i \boldsymbol{A}_i=A^i\boldsymbol{\hat e}_i Ai=Aie^i 来代表它。

向量空间上有加法和数乘。其中加法满足交换律、结合律并存在零元 0 \boldsymbol{0} 0 和逆元 − x -\boldsymbol{x} x ,数乘满足左右交换律、结合律并存在幺元 1 1 1

  • 对于矢量空间 V \mathcal{V} V ,如果存在一组线性无关的向量 { e ^ i } \{\boldsymbol{\hat e}_i\} {e^i} 使得 ∀ x ∈ V \forall\boldsymbol{x}\in\mathcal{V} xV 都可以被线性表出为

x = ∑ i = 1 3 x i e ^ i \boldsymbol{x}=\sum_{i=1}^3x^i\boldsymbol{\hat e}_i x=i=13xie^i
就称 { e ^ i } \{\boldsymbol{\hat e}_i\} {e^i} V \mathcal{V} V 的一组 (协变)基 ,基的每一个向量 e ^ i \boldsymbol{\hat e}_i e^i 都称为 (协变)基向量 x i x^i xi 称为向量 x \boldsymbol{x} x e ^ i \boldsymbol{\hat e}_i e^i 方向上的 (逆变)分量

注意它们分别被冠以下标和上标。这一记法是有意义的。

  • 电动力学用到的三维空间矢量都具有三个分量,它所属的矢量空间是三维欧氏空间。在这个三维空间中,基矢的选取有任意性。任意两组正交归一的基矢之间只相差一个 正交变换(幺正变换)。如果记变换矩阵为 R = ( R i j ) 3 × 3 \boldsymbol{R}=(R_{ij})_{3\times 3} R=(Rij)3×3 ,那么这种变换满足:

∑ j = 1 3 R i j R k j = δ i k = ∑ j = 1 3 R j i R j k R R T = I = R T R \begin{aligned} \sum_{j=1}^3R_{ij}R_{kj}&=\delta_{ik}=\sum_{j=1}^3R_{ji}R_{jk}\\ \boldsymbol{R}\boldsymbol{R}^T&=\boldsymbol{I}=\boldsymbol{R}^T\boldsymbol{R} \end{aligned} j=13RijRkjRRT=δik=j=13RjiRjk=I=RTR
上述变换性质会在后面说明,变换的细节也会得到讨论。

矢量的内积和外积

  • 向量空间是内积空间,如果可以定义这样一种内积运算 V × V → R : ( u , v ) ↦ u ∗ v \mathcal{V}\times\mathcal{V}\rightarrow\mathbb{R}:(\boldsymbol{u},\boldsymbol{v})\mapsto\boldsymbol{u}*\boldsymbol{v} V×VR:(u,v)uv ,满足
    • 交换律 u ∗ v = v ∗ u \boldsymbol{u}*\boldsymbol{v}=\boldsymbol{v}*\boldsymbol{u} uv=vu
    • 双线性 u ∗ ( α v + β w ) = α u ∗ v + β u ∗ w \boldsymbol{u}*(\alpha\boldsymbol{v}+\beta\boldsymbol{w})=\alpha\boldsymbol{u}*\boldsymbol{v}+\beta\boldsymbol{u}*\boldsymbol{w} u(αv+βw)=αuv+βuw
    • 正定性 u ∗ u ≥ 0 \boldsymbol{u}*\boldsymbol{u}\geq0 uu0 ,取等    ⟺    x = 0 \iff\boldsymbol{x}=\boldsymbol{0} x=0

点积 u ⋅ v = u i v i \boldsymbol{u}\cdot\boldsymbol{v}=u^iv^i uv=uivi 是一种内积。

  • { e ^ i } \{\boldsymbol{\hat e}_i\} {e^i} 是内积空间 V \mathcal{V} V 的协变基,对称矩阵 G = ( g i j ) 3 × 3 ≜ ( e ^ i ∗ e ^ j ) 3 × 3 G=(g_{ij})_{3\times3}\triangleq(\boldsymbol{\hat e}_i*\boldsymbol{\hat e}_j)_{3\times3} G=(gij)3×3(e^ie^j)3×3 中的元素 g i j g_{ij} gij 称为 度量矩阵协变分量 。显然,这样的矩阵 G G G 由定义的内积运算唯一确定。利用这些协变分量可以(1)表示点积、(2)定义向量长度、(3)表示两向量夹角的余弦

u ⋅ v = ( u i e ^ i ) ( v j e ^ j ) = g i j u i v j ∣ u ∣ = u ⋅ u = g i j u i u j cos ⁡ θ = u ⋅ v ∣ u ∣ ⋅ ∣ v ∣ = g i j u i v j g k l u k u l g r s u r u s \begin{aligned} &\boldsymbol{u}\cdot\boldsymbol{v}=(u^i\boldsymbol{\hat e}_i)(v^j\boldsymbol{\hat e}_j)=g_{ij}u^iv^j\\ &|\boldsymbol{u}|=\sqrt{\boldsymbol{u}\cdot\boldsymbol{u}}=\sqrt{g_{ij}u^iu^j}\\ &\cos\theta=\frac{\boldsymbol{u}\cdot\boldsymbol{v}}{|\boldsymbol{u}|\cdot|\boldsymbol{v}|}=\frac{g_{ij}u^iv^j}{\sqrt{g_{kl}u^ku^l}\sqrt{g_{rs}u^ru^s}} \end{aligned} uv=(uie^i)(vje^j)=gijuivju=uu =gijuiuj cosθ=uvuv=gklukul grsurus gijuivj

“度量张量”之“度量”就是确定向量的长度。
另外,上述的讨论表明, G G G 是一个对称正定矩阵,从而满秩。

  • { e ^ j } \{\boldsymbol{\hat e}^j\} {e^j} 为向量空间 V \mathcal{V} V 逆变基 V \mathcal{V} V 之协变基 { e ^ i } \{\boldsymbol{\hat e}_i\} {e^i} 对偶基 ,如果 e ^ j ⋅ e ^ i = δ i j = { 1 , i = j 0 , i ≠ j \boldsymbol{\hat e}^j\cdot\boldsymbol{\hat e}_i=\delta_i^j=\begin{cases}1,\quad{i=j}\\0,\quad{i\neq j}\end{cases} e^je^i=δij={1,i=j0,i=j δ i j \delta_i^j δij 称为 Krönecker 符号,也记为 δ i j \delta_{ij} δij 这种更对称的形式。考虑 { e ^ j } \{\boldsymbol{\hat e}^j\} {e^j} { e ^ i } \{\boldsymbol{\hat e}_i\} {e^i} 上的分解 e ^ j = g j i e ^ i \boldsymbol{\hat e}^j=g^{ji}\boldsymbol{\hat e}_i e^j=gjie^i ,只需根据定义检查 e ^ j ⋅ e ^ i \boldsymbol{\hat e}^j\cdot\boldsymbol{\hat e}_i e^je^i 就可以知道 这组 { e ^ j } \{\boldsymbol{\hat e}^j\} {e^j} { e ^ i } \{\boldsymbol{\hat e}_i\} {e^i} 唯一确定,且矩阵 ( g j i ) 3 × 3 (g^{ji})_{3\times3} (gji)3×3 正是 G G G 的逆 G G G 可逆,于是对于给定的协变基存在唯一的逆变基。

G − 1 G^{-1} G1 也是对称矩阵。

  • 进一步可以发现,指标的“上”、“下”,称呼的“协变”、“逆变”,两组基其实是平等关系。我们称 e ^ i \boldsymbol{\hat e}_i e^i e ^ j \boldsymbol{\hat e}^j e^j 互为 对偶基 ,或互为 共基 g j i g^{ji} gji 称为度量张量的 逆变分量

  • 任意矢量也可以由逆变基表出: u = u i e ^ i , v = v j e ^ j \boldsymbol{u}=u_i\boldsymbol{\hat e}^i,\boldsymbol{v}=v_j\boldsymbol{\hat e}^j u=uie^i,v=vje^j 。于是我们有 u i = u ⋅ e ^ i , u j = u ⋅ e ^ j u^i=\boldsymbol{u}\cdot\boldsymbol{\hat e}^i,u_j=\boldsymbol{u}\cdot\boldsymbol{\hat e}_j ui=ue^i,uj=ue^j ,整理就得到 u = u i e ^ i = u j g i j e ^ i = u i e ^ i = u j g i j e ^ i \boldsymbol{u}=u^i\boldsymbol{\hat e}_i=u^jg_{ij}\boldsymbol{\hat e}^i=u_i\boldsymbol{\hat e}^i=u_jg^{ij}\boldsymbol{\hat e}_i u=uie^i=ujgije^i=uie^i=ujgije^i 。基是线性无关向量组,所以

u i = g i j u j u i = g i j u j \begin{aligned} &u_i=g_{ij}u^j&\\ &u^i=g^{ij}u_j& \end{aligned} ui=gijujui=gijuj
联系同一矢量 u \boldsymbol{u} u 两种分量的是度量张量的有关分量,这些分量起到升降指标的作用。

矢量的多重积和混合积

  1. 混合积
    A ⋅ ( B × C ) = B ⋅ ( C × A ) = C ⋅ ( A × B ) \boldsymbol{A}\cdot(\boldsymbol{B}\times\boldsymbol{C})=\boldsymbol{B}\cdot(\boldsymbol{C}\times\boldsymbol{A})=\boldsymbol{C}\cdot(\boldsymbol{A}\times\boldsymbol{B}) A(B×C)=B(C×A)=C(A×B)

  2. 连续外积
    A × B × C = B ( A ⋅ C ) − C ( A ⋅ B ) \boldsymbol{A}\times\boldsymbol{B}\times\boldsymbol{C}=\boldsymbol{B}(\boldsymbol{A}\cdot\boldsymbol{C})-\boldsymbol{C}(\boldsymbol{A}\cdot\boldsymbol{B}) A×B×C=B(AC)C(AB)

  3. (利用1)
    ( A × B ) ⋅ ( C × D ) = ( A ⋅ C ) ( B ⋅ D ) − ( A ⋅ D ) ( B ⋅ C ) (\boldsymbol{A}\times\boldsymbol{B})\cdot(\boldsymbol{C}\times\boldsymbol{D})=(\boldsymbol{A}\cdot\boldsymbol{C})(\boldsymbol{B}\cdot\boldsymbol{D})-(\boldsymbol{A}\cdot\boldsymbol{D})(\boldsymbol{B}\cdot\boldsymbol{C}) (A×B)(C×D)=(AC)(BD)(AD)(BC)

注意相似性: ε i j k ε k l m = δ i l δ j m − δ i m δ j l \varepsilon_{ijk}\varepsilon_{klm}=\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl} εijkεklm=δilδjmδimδjl

  1. (利用2)
    A × [ B × ( C × D ) ] = B [ A ⋅ ( C × D ) ] − ( C × D ) ( A ⋅ B ) \boldsymbol{A}\times[\boldsymbol{B}\times(\boldsymbol{C}\times\boldsymbol{D})]=\boldsymbol{B}[\boldsymbol{A}\cdot(\boldsymbol{C}\times\boldsymbol{D})]-(\boldsymbol{C}\times\boldsymbol{D})(\boldsymbol{A}\cdot\boldsymbol{B}) A×[B×(C×D)]=B[A(C×D)](C×D)(AB)

一些记号和表示的约定

爱因斯坦求和表示

重复的指标意味着(对该指标)求和,而省去求和符号。
例如:

A = A 1 e ^ 1 + A 2 e ^ 2 + A 3 e ^ 3 = ∑ i A i e ^ i ≜ A i e ^ i \boldsymbol{A}=A_1{\boldsymbol{\hat e}}_1+A_2{\boldsymbol{\hat e}}_2+A_3{\boldsymbol{\hat e}}_3=\sum_iA_i{\boldsymbol{\hat e}}_i\triangleq A_i{\boldsymbol{\hat e}}_i A=A1e^1+A2e^2+A3e^3=iAie^iAie^i

又如:

∇ = ∂ ∂ x 1 e ^ 1 + ∂ ∂ x 2 e ^ 2 + ∂ ∂ x 3 e ^ 3 ≡ ∂ ∂ x i e ^ i ≡ ∂ i e ^ i \nabla=\frac{\partial}{\partial x_1}{\boldsymbol{\hat e}}_1+\frac{\partial}{\partial x_2}{\boldsymbol{\hat e}}_2+\frac{\partial}{\partial x_3}{\boldsymbol{\hat e}}_3\equiv\frac{\partial}{\partial x_i}{\boldsymbol{\hat e}}_i\equiv\partial_i{\boldsymbol{\hat e}}_i =x1e^1+x2e^2+x3e^3xie^iie^i
不重复的指标称为 取值指标 自由指标 ,重复的指标称为 哑指标 。哑指标可以任意代换: u i v i = u j v j u_iv_i=u_jv_j uivi=ujvj 。今后指标还会包括上标。例如, E i j k l ε k l E^{ijkl}\varepsilon_{kl} Eijklεkl 中的哑指标是 k , l k,l k,l

三阶完全反对称单位张量 ε i j k \varepsilon_{ijk} εijk

定义 ε i j k \varepsilon_{ijk} εijk

ε i j k ≜ ∣ δ 1 i δ 1 j δ 1 k δ 2 i δ 2 j δ 2 k δ 3 i δ 3 j δ 3 k ∣ = ∣ δ 1 i δ 2 i δ 3 i δ 1 j δ 2 j δ 3 j δ 1 k δ 2 k δ 3 k ∣ (转置) \varepsilon_{ijk}\triangleq \begin{vmatrix} \delta_{1i} & \delta_{1j} & \delta_{1k}\\ \delta_{2i} & \delta_{2j} & \delta_{2k}\\ \delta_{3i} & \delta_{3j} & \delta_{3k} \end{vmatrix}= \begin{vmatrix} \delta_{1i} & \delta_{2i} & \delta_{3i}\\ \delta_{1j} & \delta_{2j} & \delta_{3j}\\ \delta_{1k} & \delta_{2k} & \delta_{3k} \end{vmatrix}\text{(转置)} εijkδ1iδ2iδ3iδ1jδ2jδ3jδ1kδ2kδ3k=δ1iδ1jδ1kδ2iδ2jδ2kδ3iδ3jδ3k(转置)
也即, ε i j k = { 1 , (ijk)为(123)的偶排列 − 1 , (ijk)为(123)的奇排列 0 , else \varepsilon_{ijk}=\begin{cases}1,\quad&\text{(ijk)为(123)的偶排列}\\-1,\quad&\text{(ijk)为(123)的奇排列}\\0,\quad&\text{else}\end{cases} εijk=1,1,0,(ijk)(123)的偶排列(ijk)(123)的奇排列else

性质和应用
  1. 表示单位向量的内积和外积

e ^ i ⋅ e ^ j = δ i j e ^ i × e ^ j = ε i j k e ^ k ≡ e ^ k ε k i j \begin{aligned} {\boldsymbol{\hat e}}_i\cdot{\boldsymbol{\hat e}}_j&=\delta_{ij}\\ {\boldsymbol{\hat e}}_i\times{\boldsymbol{\hat e}}_j&=\varepsilon_{ijk}{\boldsymbol{\hat e}}_k\equiv{\boldsymbol{\hat e}}_k\varepsilon_{kij} \end{aligned} e^ie^je^i×e^j=δij=εijke^ke^kεkij

由此也可以推出 ε i j l δ l k = ( e ^ i × e ^ j ) ⋅ e ^ k = ε i j k \varepsilon_{ijl}\delta_{lk}=(\boldsymbol{\hat e}_i\times\boldsymbol{\hat e}_j)\cdot\boldsymbol{\hat e}_k=\varepsilon_{ijk} εijlδlk=(e^i×e^j)e^k=εijk

  1. 两个这样的单位张量的积 ε ε ′ \varepsilon\varepsilon^\prime εε ,需要分类讨论。

以下, ε i j k \varepsilon_{ijk} εijk 的指标可取的值为1,2,3;使用爱因斯坦求和表示。
只有非0的 ε \varepsilon ε 才对结果有贡献。

  • 指标完全相同时
  • ε i j k ε i j k = ∑ i 3 ∑ j 3 ∑ k 3 ε i j k ε i j k = 6 × ( ± 1 ) 2 = 6 \varepsilon_{ijk}\varepsilon_{ijk}=\sum_i^3\sum_j^3\sum_k^3\varepsilon_{ijk}\varepsilon_{ijk}=6\times(\pm 1)^2=6 εijkεijk=i3j3k3εijkεijk=6×(±1)2=6

    以上和式有27项,其中 6 = A 3 3 6=\rm A_3^3 6=A33项不为0。( ε i j k \varepsilon_{ijk} εijk有3项为+1,3项为-1,但平方了就没关系)

  • 有两个相同指标时
  • ε i j k ε j k l = ∑ j 3 ∑ k 3 ε i j k ε j k l = 2 δ i l \varepsilon_{ijk}\varepsilon_{jkl}=\sum_j^3\sum_k^3\varepsilon_{ijk}\varepsilon_{jkl}=2\delta_{il} εijkεjkl=j3k3εijkεjkl=2δil

    9个 ( j k ) (jk) (jk) 中有6个 j ≠ k j\neq k j=k 的,这其中对每一个固定的 i = l ∈ { 1 , 2 , 3 } i=l\in\{1,2,3\} i=l{1,2,3} ,只有2个使 ε ≠ 0 \varepsilon\neq 0 ε=0。(例如取定 i = l = 1 i=l=1 i=l=1 ,则 ( j k ) (jk) (jk) 就只能为 ( 23 ) (23) (23) ( 32 ) (32) (32) 。)

  • 有一个相同指标时
  • ε i j k ε k l m ≡ ∑ k = 1 3 ε i j k ε k l m = δ i l δ j m − δ i m δ j l \varepsilon_{ijk}\varepsilon_{klm}\equiv\sum_{k=1}^3\varepsilon_{ijk}\varepsilon_{klm}=\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl} εijkεklmk=13εijkεklm=δilδjmδimδjl

    这称为有一个相同指标的两个 ε \varepsilon ε 张量的缩并
    和式 ε i j k ε k l m \varepsilon_{ijk}\varepsilon_{klm} εijkεklm 有四个参数 i , j , l , m i,j,l,m i,j,l,m 。讨论:

    如果 i = j i=j i=j l = m l=m l=m ,则原式为0;
    如果 i ≠ j i\neq j i=j l ≠ m l\neq m l=m ,要让原式不等于0,必须要 ( i j k ) (ijk) (ijk) ( k l m ) (klm) (klm) 两组内都不存在相等的两个数。
    于是 { i , j } = { l , m } \{i,j\}=\{l,m\} {i,j}={l,m} 。这样,需要讨论的情况就大大减少:

    i i i j j j l l l m m m ε i j k ε k l m \varepsilon_{ijk}\varepsilon_{klm} εijkεklm
    12121
    1221-1
    2112-1
    21211

    ε i j k ε k l m = f ( i , j , l , m ) = { 1 , i , j = l , m − 1 , i , j = m , l 0 , e l s e \varepsilon_{ijk}\varepsilon_{klm}=f(i,j,l,m)=\begin{cases}1,\quad&{i,j=l,m}\\-1,\quad&{i,j=m,l}\\0,\quad&else\end{cases} εijkεklm=f(i,j,l,m)=1,1,0,i,j=l,mi,j=m,lelse ,其中 i , j , l , m ∈ { 1 , 2 , 3 } i,j,l,m\in\{1,2,3\} i,j,l,m{1,2,3}

    1. 推导公式时可以有所简化

    【例】证明 A × B × C = B ( A ⋅ C ) − C ( A ⋅ B ) \boldsymbol{A}\times\boldsymbol{B}\times\boldsymbol{C}=\boldsymbol{B}(\boldsymbol{A}\cdot\boldsymbol{C})-\boldsymbol{C}(\boldsymbol{A}\cdot\boldsymbol{B}) A×B×C=B(AC)C(AB)

    考虑

    L H S = ε i j k e ^ i ( A × B ) j C k = ε i j k e ^ i C k ( ε j l m A l B m ) = ε k i j ε j l m C k A l B m e ^ i = ( δ k l δ i m − δ k m δ i l ) C k A l B m e ^ i = C k A k B i e ^ i − C k A i B k e ^ i = ( A ⋅ C ) B − ( B ⋅ C ) A = R H S \begin{aligned} LHS&=\varepsilon_{ijk}\boldsymbol{\hat e}_i(\boldsymbol{A}\times\boldsymbol{B})_jC_k\\ &=\varepsilon_{ijk}\boldsymbol{\hat e}_iC_k(\varepsilon_{jlm}A_lB_m)\\ &=\varepsilon_{kij}\varepsilon_{jlm}C_kA_lB_m\boldsymbol{\hat e}_i\\ &=(\delta_{kl}\delta_{im}-\delta_{km}\delta_{il})C_kA_lB_m\boldsymbol{\hat e}_i\\ &=C_kA_kB_i\boldsymbol{\hat e}_i-C_kA_iB_k\boldsymbol{\hat e}_i\\ &=(\boldsymbol{A}\cdot\boldsymbol{C})\boldsymbol{B}-(\boldsymbol{B}\cdot\boldsymbol{C})\boldsymbol{A}\\ &=RHS \end{aligned} LHS=εijke^i(A×B)jCk=εijke^iCk(εjlmAlBm)=εkijεjlmCkAlBme^i=(δklδimδkmδil)CkAlBme^i=CkAkBie^iCkAiBke^i=(AC)B(BC)A=RHS
    这里用到

    ( A × B ) k = ( A × B ) ⋅ e ^ k = ε l m n A l B m e ^ n ⋅ e ^ k = ε l m n A l B m δ n k = ε l m k A l B m = ε k l m A l B m \begin{aligned} (\boldsymbol{A}\times\boldsymbol{B})_k&=(\boldsymbol{A}\times\boldsymbol{B})\cdot\boldsymbol{\hat e}_k\\ &=\varepsilon_{lmn}A_lB_m\boldsymbol{\hat e}_n\cdot\boldsymbol{\hat e}_k\\ &=\varepsilon_{lmn}A_lB_m\delta_{nk}\\ &=\varepsilon_{lmk}A_lB_m=\varepsilon_{klm}A_lB_m \end{aligned} (A×B)k=(A×B)e^k=εlmnAlBme^ne^k=εlmnAlBmδnk=εlmkAlBm=εklmAlBm

    微分算子

    这里说的微分算子是 ∇ \nabla 。它具有矢量性和微分性,可以认为

    ∇ = ∂ ∂ x 1 e ^ 1 + ∂ ∂ x 2 e ^ 2 + ∂ ∂ x 3 e ^ 3 ≡ ∂ i e ^ i \nabla=\frac{\partial}{\partial x_1}{\boldsymbol{\hat e}}_1+\frac{\partial}{\partial x_2}{\boldsymbol{\hat e}}_2+\frac{\partial}{\partial x_3}{\boldsymbol{\hat e}}_3\equiv\partial_i{\boldsymbol{\hat e}}_i =x1e^1+x2e^2+x3e^3ie^i

    于是自然地有:

    ∇ φ = e ^ i ∂ i φ \nabla\varphi=\boldsymbol{\hat e}_i\partial_i\varphi φ=e^iiφ

    ∇ ⋅ A = ∂ i A i \nabla\cdot\boldsymbol{A}=\partial_i A_i A=iAi

    ∇ × A = e ^ i ε i j k ∂ j A k = ∣ e ^ i e ^ j e ^ k ∂ i ∂ j ∂ k A i A j A k ∣ \nabla\times\boldsymbol{A}=\boldsymbol{\hat e}_i\varepsilon_{ijk}\partial_j A_k=\begin{vmatrix}\boldsymbol{\hat e}_i&\boldsymbol{\hat e}_j&\boldsymbol{\hat e}_k\\\partial_i&\partial_j&\partial_k\\A_i&A_j&A_k\end{vmatrix} ×A=e^iεijkjAk=e^iiAie^jjAje^kkAk

    ∇ A \nabla\boldsymbol{A} A 是并矢
    ∇ × C ( c o n s t . ) = 0 \nabla\times\boldsymbol{C}(const.)=\boldsymbol{0} ×C(const.)=0

    乘积微商

    以下公式可以直接利用算符的矢量性和微商的莱布尼茨法则推导:

    1. ∇ ( φ ψ ) = φ ∇ ψ + ψ ∇ φ \nabla(\varphi\psi)=\varphi\nabla\psi+\psi\nabla\varphi (φψ)=φψ+ψφ

      仅需注意到 ∂ ∂ x i ( φ ψ ) = φ ∂ ∂ x i ψ + ψ ∂ ∂ x i φ \cfrac{\partial}{\partial x_i}(\varphi\psi)=\varphi\cfrac{\partial}{\partial x_i}\psi+\psi\cfrac{\partial}{\partial x_i}\varphi xi(φψ)=φxiψ+ψxiφ


    1. ∇ ⋅ ( φ A ) = φ ∇ ⋅ A + A ⋅ ∇ φ \nabla\cdot(\varphi\boldsymbol{A})=\varphi\nabla\cdot\boldsymbol{A}+\boldsymbol{A}\cdot\nabla\varphi (φA)=φA+Aφ

      数乘 φ A \varphi\boldsymbol{A} φA 会直接作用到 A \boldsymbol{A} A 的每一个分量上,所以推导和1相同。

      ∇ ⋅ ( A × B ) = B ⋅ ∇ × A − A ⋅ ∇ × B \nabla\cdot(\boldsymbol{A}\times\boldsymbol{B})=\boldsymbol{B}\cdot\nabla\times\boldsymbol{A}-\boldsymbol{A}\cdot\nabla\times\boldsymbol{B} (A×B)=B×AA×B

      写成矩阵式即要证明 ∣ ∂ 1 ∂ 2 ∂ 3 A 1 A 2 A 3 B 1 B 2 B 3 ∣ = ∣ B 1 B 2 B 3 ∂ 1 ∂ 2 ∂ 3 A 1 A 2 A 3 ∣ − ∣ A 1 A 2 A 3 ∂ 1 ∂ 2 ∂ 3 B 1 B 2 B 3 ∣ \begin{vmatrix}\partial_1&\partial_2&\partial_3\\A_1&A_2&A_3\\B_1&B_2&B_3\end{vmatrix}=\begin{vmatrix}B_1&B_2&B_3\\\partial_1&\partial_2&\partial_3\\A_1&A_2&A_3\end{vmatrix}-\begin{vmatrix}A_1&A_2&A_3\\\partial_1&\partial_2&\partial_3\\B_1&B_2&B_3\end{vmatrix} 1A1B12A2B23A3B3=B11A1B22A2B33A3A11B1A22B2A33B3
      可以计算证明。


    1. ∇ × ( φ A ) = ∇ φ × A + φ ∇ × A \nabla\times(\varphi\boldsymbol{A})=\nabla\varphi\times\boldsymbol{A}+\varphi\nabla\times\boldsymbol{A} ×(φA)=φ×A+φ×A

      也可以展开为矩阵式 ∣ e ^ 1 e ^ 2 e ^ 3 ∂ 1 ∂ 2 ∂ 3 φ A 1 φ A 2 φ A 3 ∣ = ∣ e ^ 1 e ^ 2 e ^ 3 ∂ 1 φ ∂ 2 φ ∂ 3 φ A 1 A 2 A 3 ∣ + ∣ e ^ 1 e ^ 2 e ^ 3 φ ∂ 1 φ ∂ 2 φ ∂ 3 A 1 A 2 A 3 ∣ \begin{vmatrix}\boldsymbol{\hat e}_1&\boldsymbol{\hat e}_2&\boldsymbol{\hat e}_3\\ \partial_1&\partial_2&\partial_3\\ \varphi A_1&\varphi A_2&\varphi A_3\end{vmatrix}=\begin{vmatrix}\boldsymbol{\hat e}_1&\boldsymbol{\hat e}_2&\boldsymbol{\hat e}_3\\ \partial_1\varphi&\partial_2\varphi&\partial_3\varphi\\ A_1&A_2&A_3\end{vmatrix}+\begin{vmatrix}\boldsymbol{\hat e}_1&\boldsymbol{\hat e}_2&\boldsymbol{\hat e}_3\\ \varphi\partial_1&\varphi\partial_2&\varphi\partial_3\\ A_1&A_2&A_3\end{vmatrix} e^11φA1e^22φA2e^33φA3=e^11φA1e^22φA2e^33φA3+e^1φ1A1e^2φ2A2e^3φ3A3

      再利用 ∂ ( φ A ) = φ ∂ A + A ∂ φ \partial(\varphi A)=\varphi\partial A+A\partial\varphi (φA)=φA+Aφ 即可。

      这里也体现出了 ∂ \partial 的特性,它作用在一个乘积上并不只相乘,而是遵循莱布尼茨法则。

      ∇ × ( A × B ) = A ( ∇ ⋅ B ) + ( B ⋅ ∇ ) A − B ( ∇ ⋅ A ) − ( A ⋅ ∇ ) B \nabla\times(\boldsymbol{A}\times\boldsymbol{B})=\boldsymbol{A}(\nabla\cdot\boldsymbol{B})+(\boldsymbol{B}\cdot\nabla)\boldsymbol{A}-\boldsymbol{B}(\nabla\cdot\boldsymbol{A})-(\boldsymbol{A}\cdot\nabla)\boldsymbol{B} ×(A×B)=A(B)+(B)AB(A)(A)B

      用爱因斯坦求和表示会比较简单:

    L H S = ε i j k e ^ i ∂ j ( A × B ) k = ε i j k ∂ j ( A l B m ) ε k l m e ^ i = ( δ i l δ j m − δ i m δ j l ) ( A l ∂ j B m + B m ∂ j A l ) e ^ i = A i e ^ i ∂ j B j − A j ∂ j B i e ^ i + B j ∂ j A i e ^ i − B i e ^ i ∂ j A j = A ( ∇ ⋅ B ) − ( A ⋅ ∇ ) B + ( B ⋅ ∇ ) A − B ( ∇ ⋅ A ) = R H S \begin{aligned} LHS&=\varepsilon_{ijk}\boldsymbol{\hat e}_i\partial_j(\boldsymbol{A}\times\boldsymbol{B})_k\\ &=\varepsilon_{ijk}\partial_j(A_lB_m)\varepsilon_{klm}\boldsymbol{\hat e}_i\\ &=(\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl})(A_l\partial_jB_m+B_m\partial_jA_l)\boldsymbol{\hat e}_i\\ &=A_i\boldsymbol{\hat e}_i\partial_jB_j - A_{j}\partial_{j}B_{i}\boldsymbol{\hat e}_i+ B_{j}\partial_{j}A_{i}\boldsymbol{\hat e}_i- B_{i}\boldsymbol{\hat e}_i\partial_{j}A_{j}\\ &=\boldsymbol{A}(\nabla\cdot\boldsymbol{B})-(\boldsymbol{A}\cdot\nabla)\boldsymbol{B}+(\boldsymbol{B}\cdot\nabla)\boldsymbol{A}-\boldsymbol{B}(\nabla\cdot\boldsymbol{A})\\ &=RHS \end{aligned} LHS=εijke^ij(A×B)k=εijkj(AlBm)εklme^i=(δilδjmδimδjl)(AljBm+BmjAl)e^i=Aie^ijBjAjjBie^i+BjjAie^iBie^ijAj=A(B)(A)B+(B)AB(A)=RHS


    1. ∇ × ∇ × A = ∇ ( ∇ ⋅ A ) − ∇ 2 A \nabla\times\nabla\times\boldsymbol{A}=\nabla(\nabla\cdot\boldsymbol{A})-\nabla^2\boldsymbol{A} ××A=(A)2A

      利用和上式类似方式展开即可。


    1. ( ∇ × A ) × A = ( A ⋅ ∇ ) A − 1 2 ∇ A 2 (\nabla\times\boldsymbol{A})\times\boldsymbol{A}=(\boldsymbol{A}\cdot\nabla)\boldsymbol{A}-\cfrac12\nabla A^2 (×A)×A=(A)A21A2

      同理可以直接展开为

    = ε i j k e ^ i ( ∇ × A ) j A k = ε i j k e ^ i ε j l m A k ∂ l A m = ( δ k l δ i m − δ k m δ i l ) A k ∂ l A m e ^ i = ( A k ∂ k A i − A k ∂ i A k ) e ^ i = ( A ⋅ ∇ ) A − ∇ ( 1 2 A 2 ) \begin{aligned} &=\varepsilon_{ijk}\boldsymbol{\hat e}_i(\nabla\times\boldsymbol{A})_jA_k\\ &=\varepsilon_{ijk}\boldsymbol{\hat e}_i\varepsilon_{jlm}A_k\partial_lA_m\\ &=(\delta_{kl}\delta_{im}-\delta_{km}\delta_{il})A_k\partial_lA_m\boldsymbol{\hat e}_i\\ &=(A_k\partial_kA_i-A_k\partial_iA_k)\boldsymbol{\hat e}_i\\ &=(\boldsymbol{A}\cdot\nabla)\boldsymbol{A}-\nabla(\frac{1}{2}A^2) \end{aligned} =εijke^i(×A)jAk=εijke^iεjlmAklAm=(δklδimδkmδil)AklAme^i=(AkkAiAkiAk)e^i=(A)A(21A2)
    > 其中用到 A k ∇ A k = 1 2 ∇ A k 2 = ∇ 1 2 A 2 A_k\nabla A_k=\cfrac12\nabla A_k^2=\nabla\cfrac12A^2 AkAk=21Ak2=21A2 ,注意爱因斯坦求和表示。


    下式用分量形式证明也不难:

    1. ∇ ( A ⋅ B ) = ( A ⋅ ∇ ) B + ( B ⋅ ∇ ) A + A × ( ∇ × B ) + B × ( ∇ × A ) \nabla(\boldsymbol{A}\cdot\boldsymbol{B})=(\boldsymbol{A}\cdot\nabla)\boldsymbol{B}+(\boldsymbol{B}\cdot\nabla)\boldsymbol{A}+\boldsymbol{A}\times(\nabla\times\boldsymbol{B})+\boldsymbol{B}\times(\nabla\times\boldsymbol{A}) (AB)=(A)B+(B)A+A×(×B)+B×(×A)

      考虑分量形式


    以下公式涉及对 r r r 的微商:

    1. ∇ r = r r = r ^ \nabla r=\cfrac{\boldsymbol{r}}{r}=\boldsymbol{\hat r} r=rr=r^

      只需注意到 r = r ( x , y , z ) = x 2 + y 2 + z 2 r=r(x,y,z)=\sqrt{x^2+y^2+z^2} r=r(x,y,z)=x2+y2+z2 r ^ = r − 1 ( x i + y j + z k ) = ( x 2 + y 2 + z 2 ) − 1 2 ( x i + y j + z k ) \boldsymbol{\hat r}=r^{-1}(x\boldsymbol{i}+y\boldsymbol{j}+z\boldsymbol{k})=(x^2+y^2+z^2)^{-\frac12}(x\boldsymbol{i}+y\boldsymbol{j}+z\boldsymbol{k}) r^=r1(xi+yj+zk)=(x2+y2+z2)21(xi+yj+zk) ,并计算 ∂ i r = r − 1 x i \partial_i r=r^{-1}x_i ir=r1xi

      ∇ f ( r ) = d f ( r ) d r r ^ \nabla f(r)=\cfrac{{\rm d}f(r)}{{\rm d}r}\boldsymbol{\hat r} f(r)=drdf(r)r^

      使用复合函数的求导法则 ∇ f ( r ) = d f ( r ) d r ∇ r \nabla f(r)=\cfrac{{\rm d}f(r)}{{\rm d}r}\nabla r f(r)=drdf(r)r

      ∇ 2 1 r = − 4 π δ 3 ( r ) \nabla^2\cfrac 1r=-4\pi\delta^3(r) 2r1=4πδ3(r)

      直接计算:对于 r ≠ 0 r\neq 0 r=0 的点均有 ∇ 1 r = − 1 r 2 r ^ \nabla\cfrac1r=-\cfrac1{r^2}\boldsymbol{\hat r} r1=r21r^ ∇ ⋅ ( ∇ 1 r ) = − ∇ ⋅ r ^ r 2 = − ∇ ⋅ r r 3 = − r 3 ( ∇ ⋅ r ) − ( ∇ r 3 ) ⋅ r r 6 = 3 r 3 − 3 r 2 ⋅ r r 6 = 0 \nabla\cdot(\nabla\cfrac1r)=-\nabla\cdot\cfrac{\boldsymbol{\hat r}}{r^2}=-\nabla\cdot\cfrac{\boldsymbol{r}}{r^3}=-\cfrac{r^3(\nabla\cdot\boldsymbol{r})-(\nabla r^3)\cdot\boldsymbol{r}}{r^6}=\cfrac{3r^3-3r^2\cdot r}{r^6}=0 (r1)=r2r^=r3r=r6r3(r)(r3)r=r63r33r2r=0 ,其中使用了 ∇ r = r ^ \nabla r=\boldsymbol{\hat r} r=r^ ∇ ⋅ r = 3 \nabla\cdot\boldsymbol{r}=3 r=3 。而若使用高斯定理对以 r = 0 \boldsymbol{r}=\boldsymbol{0} r=0 为圆心任意半径 δ \delta δ 的球形区域进行积分,就会有

    ∭ B ( 0 , δ ) ∇ ⋅ ( ∇ 1 r )   d V = ∬ ∂ B ( ∇ 1 r ) ⋅ d a = − 1 δ 2 ∬ ∂ B d a = − 4 π δ 2 δ 2 = − 4 π \iiint_{B(\boldsymbol{0},\delta)}\nabla\cdot(\nabla\frac1r)\,{\rm d}V=\iint_{\partial B}(\nabla\frac1r)\cdot{\rm d}\boldsymbol{a}=-\frac{1}{\delta^2}\iint_{\partial B}{\rm d}a=-\frac{4\pi\delta^2}{\delta^2}=-4\pi B(0,δ)(r1)dV=B(r1)da=δ21Bda=δ24πδ2=4π

    考虑到 ∇ ⋅ ( ∇ 1 r ) = 0 ( r ≠ 0 ) \nabla\cdot(\nabla\cfrac1r)=0\quad(r\neq 0) (r1)=0(r=0) ,于是应有 ∇ ⋅ ( ∇ 1 r ) ∣ r = 0 = − 4 π δ 3 ( r ) \nabla\cdot(\nabla\frac1r)\Bigg|_{r=0}=-4\pi\delta^3(r) (r1)r=0=4πδ3(r)

    高阶微分
    1. 梯度算符相关的二阶导数: ∇ ⋅ ( ∇ A ) = ∂ 2 ∂ x i 2 A ≜ ∇ 2 A ≜ Δ A \nabla\cdot(\nabla A)=\frac{\partial^2}{\partial x_i^2}A\triangleq\nabla^2A\triangleq\Delta A (A)=xi22A2AΔA

    这是显然的: ∇ ⋅ ∇ = e ^ i ∂ i ⋅ e ^ j ∂ j = δ i j ∂ i ∂ j = ∂ i 2 \nabla\cdot\nabla=\boldsymbol{\hat e}_i\partial_i\cdot\boldsymbol{\hat e}_j\partial_j=\delta{ij}\partial_i\partial_j=\partial^2_i =e^iie^jj=δijij=i2

    1. ∇ ( ∇ ⋅ A ) = e ^ i ∂ i ( ∂ j A j ) \nabla(\nabla\cdot\boldsymbol{A})=\boldsymbol{\hat e}_i\partial_i(\partial_jA_j) (A)=e^ii(jAj)

    2. 矢量场旋度的旋度 ∇ × ( ∇ × A ) = ∇ ( ∇ ⋅ A ) − ∇ 2 A \nabla\times(\nabla\times\boldsymbol{A})=\nabla(\nabla\cdot\boldsymbol{A})-\nabla^2\boldsymbol{A} ×(×A)=(A)2A

    使用分量表示:

    L H S = ε i j k e ^ i ∂ j ( ∇ × A ) k = ε i j k e ^ i ∂ j ∂ l A m ε k l m = ∂ j e ^ i ∂ i A j − ∂ j ∂ j A i e ^ i = ∇ ( ∇ ⋅ A ) − ∇ 2 A = R H S \begin{aligned} LHS&=\varepsilon_{ijk}\boldsymbol{\hat e}_i\partial_j(\nabla\times\boldsymbol{A})_k\\ &=\varepsilon_{ijk}\boldsymbol{\hat e}_i\partial_j\partial_lA_m\varepsilon_{klm}\\ &=\partial_j\boldsymbol{\hat e}_i\partial_iA_j-\partial_j\partial_jA_i\boldsymbol{\hat e}_i\\ &=\nabla(\nabla\cdot\boldsymbol{A})-\nabla^2\boldsymbol{A}\\ &=RHS \end{aligned} LHS=εijke^ij(×A)k=εijke^ijlAmεklm=je^iiAjjjAie^i=(A)2A=RHS

    1. ∇ × ( ∇ A ) ≡ 0 \nabla\times(\nabla A)\equiv 0 ×(A)0

    只需考虑 ∇ × ( ∇ A ) = ε i j k e ^ i ∂ j ( e ^ l ∂ l A ) k = ε i j k e ^ i ∂ j ∂ k A = ε i j k e ^ i ∂ k ∂ j A \nabla\times(\nabla A)=\varepsilon_{ijk}\boldsymbol{\hat e}_i\partial_j(\boldsymbol{\hat e}_l\partial_lA)_k=\varepsilon_{ijk}\boldsymbol{\hat e}_i\partial_j\partial_kA=\varepsilon_{ijk}\boldsymbol{\hat e}_i\partial_k\partial_jA ×(A)=εijke^ij(e^llA)k=εijke^ijkA=εijke^ikjA (二阶导换序),而做代换 j = k , k = j j=k,k=j j=k,k=j ,右式就等于 ε i k j e ^ i ∂ j ∂ k A = − ε i j k e ^ i ∂ j ∂ k A \varepsilon_{ikj}\boldsymbol{\hat e}_i\partial_j\partial_kA=-\varepsilon_{ijk}\boldsymbol{\hat e}_i\partial_j\partial_kA εikje^ijkA=εijke^ijkA 。这样就得到 ∇ × ( ∇ A ) = 0 \nabla\times(\nabla A)=0 ×(A)=0

    上述结论 ε i j k e ^ i ∂ j ∂ k A = 0 \varepsilon_{ijk}\boldsymbol{\hat e}_i\partial_j\partial_kA=0 εijke^ijkA=0 也可以写成矩阵形式

    ∣ ∂ 1 ∂ 2 ∂ 3 ∂ 1 ∂ 2 ∂ 3 A 1 A 2 A 3 ∣ = 0 \begin{vmatrix} \partial_1 & \partial_2 & \partial_3\\ \partial_1 & \partial_2 & \partial_3\\ A_1 & A_2 & A_3\\ \end{vmatrix}=0 11A122A233A3=0
    这样看更加容易,仅需对第三行展开,利用二阶导可以换序的性质即可。

    1. ∇ ⋅ ( ∇ × A ) ≡ 0 \nabla\cdot(\nabla\times\boldsymbol{A})\equiv 0 (×A)0

    也是计算 ∇ ⋅ ( ∇ × A ) = ∂ i ( ∇ × A ) i = ∂ i ε i j k ∂ j A k = ε i j k ∂ i ∂ j A k \nabla\cdot(\nabla\times\boldsymbol{A})=\partial_i(\nabla\times\boldsymbol{A})_i=\partial_i\varepsilon_{ijk}\partial_jA_k=\varepsilon_{ijk}\partial_i\partial_jA_k (×A)=i(×A)i=iεijkjAk=εijkijAk 。类似4的推导,利用积分可换序得到这个和式等于0。

    1. ∇ 2 A = e ^ i ∇ 2 A i \nabla^2\boldsymbol{A}=\boldsymbol{\hat e}_i\nabla^2A_i 2A=e^i2Ai

    ∇ 2 A \nabla^2\boldsymbol{A} 2A 是从3定义的,它满足 ∇ 2 A = ∂ j ∂ j A i e ^ i = e ^ i ∂ j 2 A i = e ^ i ∇ 2 A i \nabla^2\boldsymbol{A}=\partial_j\partial_jA_i\boldsymbol{\hat e}_i=\boldsymbol{\hat e}_i\partial_j^2A_i=\boldsymbol{\hat e}_i\nabla^2A_i 2A=jjAie^i=e^ij2Ai=e^i2Ai

    微分和矢量计算的不同

    主要原因就是,求导和乘法不可交换顺序。

    矢量的积分定理

    高斯定理

    ∫ V ∇ ⋅ V d τ = ∫ ∂ V d a ⋅ V \int_V\nabla\cdot\boldsymbol{V}{\rm d}\tau=\int_{\partial V}{\rm d}\boldsymbol{a}\cdot\boldsymbol{V} VVdτ=VdaV

    斯托克斯定理

    ∫ S ∇ × V ⋅ d a = ∫ ∂ S V ⋅ d l \int_S\nabla\times\boldsymbol{V}\cdot{\rm d}\boldsymbol{a}=\int_{\partial S}\boldsymbol{V}\cdot{\rm d}\boldsymbol{l} S×Vda=SVdl

    分部积分法

    最常见的是偏散度的体积分配凑为全散度的体积分。主要是逆用全散度公式等。

    δ函数的引入

    用于描述点、线、面等低维分布的电荷和电流。

    曲线坐标系

    为了解决某些物理问题,根据对称性可以选择最合适的坐标系。设坐标集为 { q i } \{q_i\} {qi} ,则线元、面元、体元一般可以表示成

    d l = h i d q i e ^ i d a = ε i j k h j h k d q j d q k e ^ i d τ = h 1 h 2 h 3 d q i d q j d q k \begin{aligned} {\rm d}\boldsymbol{l}&=h_i{\rm d}q_i\boldsymbol{\hat e}_i\\ {\rm d}\boldsymbol{a}&=\varepsilon_{ijk}h_jh_k{\rm d}q_j{\rm d}q_k\boldsymbol{\hat e}_i\\ {\rm d}\tau&=h_1h_2h_3{\rm d}q_i{\rm d}q_j{\rm d}q_k \end{aligned} dldadτ=hidqie^i=εijkhjhkdqjdqke^i=h1h2h3dqidqjdqk
    直角坐标系、柱坐标系、球坐标系对应的 { q i } \{q_i\} {qi} { h i } \{h_i\} {hi} 为:

    { q i } \{q_i\} {qi} h 1 h_1 h1 h 2 h_2 h2 h 3 h_3 h3备注
    ( x , y , z ) (x,y,z) (x,y,z)111直角坐标
    ( s , ϕ , z ) (s,\phi,z) (s,ϕ,z)1 s s s1柱坐标
    ( r , θ , ϕ ) (r,\theta,\phi) (r,θ,ϕ)1 r r r r sin ⁡ θ r\sin\theta rsinθ球坐标

    这是因为:

    d l = d x e ^ x + d y e ^ y + d z e ^ z = d s e ^ s + s d ϕ e ^ ϕ + d z e ^ z = d r e ^ r + r d θ e ^ θ + r sin ⁡ θ d ϕ e ^ ϕ \begin{aligned} {\rm d}\boldsymbol{l}&={\rm d}x\boldsymbol{\hat e}_x+{\rm d}y\boldsymbol{\hat e}_y+{\rm d}z\boldsymbol{\hat e}_z\\ &={\rm d}s\boldsymbol{\hat e}_s+s{\rm d}\phi\boldsymbol{\hat e}_\phi+{\rm d}z\boldsymbol{\hat e}_z\\ &={\rm d}r\boldsymbol{\hat e}_r+r{\rm d}\theta\boldsymbol{\hat e}_\theta+r\sin\theta{\rm d}\phi\boldsymbol{\hat e}_\phi \end{aligned} dl=dxe^x+dye^y+dze^z=dse^s+sdϕe^ϕ+dze^z=dre^r+rdθe^θ+rsinθdϕe^ϕ

    在这里插入图片描述

    微分算子

    一般形式
    • ∇ φ = e ^ 1 h 1 ∂ ∂ q 1 φ + e ^ 2 h 2 ∂ ∂ q 2 φ + e ^ 3 h 3 ∂ ∂ q 3 φ ≡ e ^ i h i ∂ ∂ q i φ \nabla\varphi=\cfrac{\boldsymbol{\hat e}_1}{h_1}\cfrac{\partial}{\partial q_1}\varphi+\cfrac{\boldsymbol{\hat e}_2}{h_2}\cfrac{\partial}{\partial q_2}\varphi+\cfrac{\boldsymbol{\hat e}_3}{h_3}\cfrac{\partial}{\partial q_3}\varphi\equiv\cfrac{\boldsymbol{\hat e}_i}{h_i}\cfrac{\partial}{\partial q_i}\varphi φ=h1e^1q1φ+h2e^2q2φ+h3e^3q3φhie^iqiφ

    这样就可以满足 ∇ φ ⋅ d l = ( e ^ i h i ∂ ∂ q i φ ) ⋅ e ^ i h i d q i = ∂ φ ∂ q i d q i = d φ \nabla\varphi\cdot{\rm d}\boldsymbol{l}=\left(\cfrac{\boldsymbol{\hat e}_i}{h_i}\cfrac{\partial}{\partial q_i}\varphi\right)\cdot\boldsymbol{\hat e}_ih_i{\rm d}q_i=\cfrac{\partial\varphi}{\partial q_i}{\rm d}q_i={\rm d}\varphi φdl=(hie^iqiφ)e^ihidqi=qiφdqi=dφ ,即该坐标系下的全微分。

    • ∇ ⋅ V = 1 h 1 h 2 h 3 [ ∂ ∂ q 1 ( h 2 h 3 V 1 ) + ∂ ∂ q 2 ( h 3 h 1 V 2 ) + ∂ ∂ q 3 ( h 1 h 2 V 3 ) ] ≡ ε i j k h 1 h 2 h 3 ∂ ∂ q i ( q j q k V i ) \nabla\cdot\boldsymbol{V}=\cfrac{1}{h_1h_2h_3}\left[\cfrac{\partial}{\partial q_1}(h_2h_3V_1)+\cfrac{\partial}{\partial q_2}(h_3h_1V_2)+\cfrac{\partial}{\partial q_3}(h_1h_2V_3)\right]\equiv\cfrac{\varepsilon_{ijk}}{h_1h_2h_3}\cfrac{\partial}{\partial q_i}(q_jq_kV_i) V=h1h2h31[q1(h2h3V1)+q2(h3h1V2)+q3(h1h2V3)]h1h2h3εijkqi(qjqkVi)

    考虑该曲线坐标系下,矢量场 V ( q 1 , q 2 , q 3 ) \boldsymbol{V}(q_1,q_2,q_3) V(q1,q2,q3) 在一个长方体区域 R ( q ; Δ l ) R(\boldsymbol{q};{\Delta}\boldsymbol{l}) R(q;Δl) 上的积分:

    ( ∇ ⋅ V ) ∣ q = ( q 1 , q 2 , q 3 ) = 1 Δ τ ∫ ∂ R d a ⋅ V (高斯定理) = 1 8 h 1 h 2 h 3 [ V ( q 1 + Δ q 1 , q 2 , q 3 ) − V ( q 1 − Δ q 1 , q 2 , q 3 ) Δ q 1 ⋅ Δ a 1 + ⋯ Δ q 2 ⋅ Δ a 2 + ⋯ Δ q 3 ⋅ Δ a 3 ] = ε i j k 4 h 1 h 2 h 3 ∂ ∂ q i ( 4 q j q k V i ) = ε i j k h 1 h 2 h 3 ∂ ∂ q i ( q j q k V i ) = 1 h 1 h 2 h 3 [ ∂ ∂ q 1 ( h 2 h 3 V 1 ) + ∂ ∂ q 2 ( h 3 h 1 V 2 ) + ∂ ∂ q 3 ( h 1 h 2 V 3 ) ] \begin{aligned} (\nabla\cdot\boldsymbol{V})\bigg|_{\boldsymbol{q}=(q_1,q_2,q_3)} &=\frac{1}{\Delta{\tau}}\int_{\partial R}{\rm d}\boldsymbol{a}\cdot\boldsymbol{V}\quad&\text{(高斯定理)}\\ &=\frac{1}{8h_1h_2h_3}\left[\frac{\boldsymbol{V}(q_1+\Delta{q_1},q_2,q_3)-\boldsymbol{V}(q_1-\Delta{q_1},q_2,q_3)}{\Delta{q_1}}\cdot\Delta{\boldsymbol{a}_1}+\frac{\cdots}{\Delta{q_2}}\cdot\Delta{\boldsymbol{a}_2}+\frac{\cdots}{\Delta{q_3}}\cdot\Delta{\boldsymbol{a}_3}\right]\\ &=\frac{\varepsilon_{ijk}}{4h_1h_2h_3}\frac{\partial}{\partial q_i}(4q_jq_kV_i)=\frac{\varepsilon_{ijk}}{h_1h_2h_3}\frac{\partial}{\partial q_i}(q_jq_kV_i)\\ &=\cfrac{1}{h_1h_2h_3}\left[\cfrac{\partial}{\partial q_1}(h_2h_3V_1)+\cfrac{\partial}{\partial q_2}(h_3h_1V_2)+\cfrac{\partial}{\partial q_3}(h_1h_2V_3)\right] \end{aligned} (V)q=(q1,q2,q3)=Δτ1RdaV=8h1h2h31[Δq1V(q1+Δq1,q2,q3)V(q1Δq1,q2,q3)Δa1+Δq2Δa2+Δq3Δa3]=4h1h2h3εijkqi(4qjqkVi)=h1h2h3εijkqi(qjqkVi)=h1h2h31[q1(h2h3V1)+q2(h3h1V2)+q3(h1h2V3)](高斯定理)

    ε \varepsilon ε 符号是在微分面元中引入的。

    • ∇ × V = 1 h 1 h 2 h 3 ∣ h 1 e ^ 1 h 2 e ^ 2 h 3 e ^ 3 ∂ 1 ∂ 2 ∂ 3 h 1 V 1 h 2 V 2 h 3 V 3 ∣ \nabla\times\boldsymbol{V}=\cfrac{1}{h_1h_2h_3}\begin{vmatrix}h_1\boldsymbol{\hat e}_1 & h_2\boldsymbol{\hat e}_2 & h_3\boldsymbol{\hat e}_3\\\partial_1 & \partial_2 & \partial_3\\h_1V_1 & h_2V_2 & h_3V_3\end{vmatrix} ×V=h1h2h31h1e^11h1V1h2e^22h2V2h3e^33h3V3

    考虑该曲线坐标系下,矢量场 V ( q 1 , q 2 , q 3 ) \boldsymbol{V}(q_1,q_2,q_3) V(q1,q2,q3) 在一个长方形区域上的积分:

    • ∇ 2 φ = 1 h 1 h 2 h 3 [ ∂ 1 ( h 2 h 3 h 1 ∂ 1 φ ) + ∂ 2 ( h 3 h 1 h 2 ∂ 2 φ ) + ∂ 3 ( h 1 h 2 h 3 ∂ 3 φ ) ] \nabla^2\varphi=\cfrac{1}{h_1h_2h_3}\left[\partial_1\left(\cfrac{h_2h_3}{h_1}\partial_1\varphi\right)+\partial_2\left(\cfrac{h_3h_1}{h_2}\partial_2\varphi\right)+\partial_3\left(\cfrac{h_1h_2}{h_3}\partial_3\varphi\right)\right] 2φ=h1h2h31[1(h1h2h31φ)+2(h2h3h12φ)+3(h3h1h23φ)]

    正交变换

    坐标转动变换

    向量的重要特征,在于其分量随坐标架的转动而变化。

    考虑一矢量 x \boldsymbol x x在具有共同原点的两个不同笛卡尔坐标系 S : { e ^ i } , S ′ : { e ^ i ′ } S:\{\boldsymbol{\hat e}_i\},\quad S^\prime:\{\boldsymbol{\hat e}_i^\prime\} S:{e^i},S:{e^i}下,各个分量的关系。首先假设它们的基矢之间有变换 e ^ 1 × 3 = e ^ 1 × 3 ′ R 3 × 3 \boldsymbol{\hat e}_{1\times 3}=\boldsymbol{\hat e}^\prime_{1\times 3}\boldsymbol{R}_{3\times 3} e^1×3=e^1×3R3×3 ,其中 R \boldsymbol{R} R 为变换矩阵。也即

    e ^ i = ∑ j = 1 3 e ^ j ′ R j i ≡ e ^ j ′ R j i \boldsymbol{\hat e}_i=\sum_{j=1}^3\boldsymbol{\hat e}_j^\prime R_{ji}\equiv\boldsymbol{\hat e}_j^\prime R_{ji} e^i=j=13e^jRjie^jRji
    考虑任一矢量可以分别展开为

    b = b i e ^ i = ( b ′ ) j e ^ j ′ \boldsymbol{b}=b^i\boldsymbol{\hat e}_i=(b^\prime)^j\boldsymbol{\hat e}_j^\prime b=bie^i=(b)je^j
    代入基矢之间的上述关系,就可以得到分量之间的关系

    ( b ′ ) j = R j i b i ( ≡ ∑ i = 1 3 R j i b i ) (b^\prime)^j=R_{ji}b^i\left(\equiv\sum_{i=1}^3R_{ji}b^i\right) (b)j=Rjibi(i=13Rjibi)
    并列写出就有矩阵形式:

    如果两组基矢之间相差变换 R 3 × 3 : ( e ^ 1 , e ^ 2 , e ^ 3 ) = ( e ^ 1 ′ , e ^ 2 ′ , e ^ 3 ′ )   R \boldsymbol{R}_{3\times 3}:(\boldsymbol{\hat e}_1,\boldsymbol{\hat e}_2,\boldsymbol{\hat e}_3)=(\boldsymbol{\hat e}^\prime_1,\boldsymbol{\hat e}^\prime_2,\boldsymbol{\hat e}^\prime_3)\,\boldsymbol{R} R3×3:(e^1,e^2,e^3)=(e^1,e^2,e^3)R ,那么同一矢量 b \boldsymbol{b} b 在两组坐标架下的表示之间满足变换关系

    ( b ′ ) T = ( b 1 ′ , b 2 ′ , b 3 ′ ) T = R   ( b 1 , b 2 , b 3 ) T = R   b T (\boldsymbol{b}^\prime)^T=(b_1^\prime,b_2^\prime,b_3^\prime)^T=\boldsymbol{R}\,(b_1,b_2,b_3)^T=\boldsymbol{R}\,\boldsymbol{b}^T (b)T=(b1,b2,b3)T=R(b1,b2,b3)T=RbT
    亦即 b ′ = b   R T \boldsymbol{b}^\prime=\boldsymbol{b}\,\boldsymbol{R}^T b=bRT

    以上用到了爱因斯坦求和表示。

    另外, 变换关系 b j ′ = R j i b i b_j^\prime=R_{ji}b_i bj=Rjibi 事实上给出了矢量的一种定义:在坐标变换下,满足上面这个变换规则的量叫做 矢量

    正交变换

    正交变换的定义是保内积的变换:

    x ⋅ y = x ′ ⋅ y ′ \boldsymbol{x}\cdot\boldsymbol{y}=\boldsymbol{x}^\prime\cdot\boldsymbol{y}^\prime xy=xy
    立刻知道这种变换也保矢量的模长( ∣ x ∣ = ∣ x ′ ∣ |\boldsymbol{x}|=|\boldsymbol{x}^\prime| x=x )。将内积式展开,就得到

    x ′ ⋅ x ′ = x i ′ x i ′ = R i j R i k x j x k ≡ x i x i = x ⋅ x \boldsymbol{x}^\prime\cdot\boldsymbol{x}^\prime=x_i^\prime x_i^\prime=R_{ij}R_{ik}x_jx_k\equiv x_ix_i=\boldsymbol{x}\cdot\boldsymbol{x} xx=xixi=RijRikxjxkxixi=xx
    利用线性方程组的原理可以证明,上式恒成立要求

    ∑ i R i j R i k ≡ R i j R i k = δ j k \sum_i R_{ij}R_{ik}\equiv R_{ij}R_{ik}=\delta_{jk} iRijRikRijRik=δjk

    类似地有 R i k R j k = δ i j R_{ik}R_{jk}=\delta_{ij} RikRjk=δij 。这表明正交变换的矩阵的行、列向量都满足 正交归一条件

    以上用到了爱因斯坦求和表示。

    利用矩阵运算亦可说明:

    x ′ ⋅ x ′ = x ′ ( x ′ ) T = x R T R x T ≡ x x T = x ⋅ x \boldsymbol{x}^\prime\cdot\boldsymbol{x}^\prime=\boldsymbol{x}^\prime(\boldsymbol{x}^\prime)^T=\boldsymbol{x}\boldsymbol{R}^T\boldsymbol{R}\boldsymbol{x}^T\equiv \boldsymbol{x}\boldsymbol{x}^T=\boldsymbol{x}\cdot\boldsymbol{x} xx=x(x)T=xRTRxTxxT=xx
    上式中间三项是矩阵乘法。可以推出 R − 1 = R T R^{-1}=R^T R1=RT正交变换矩阵的逆矩阵和转置矩阵相同

    张量

    使张量分析获得成功的实质在于其不变性,即不随坐标系的选择而变化的性质。
    例如, Laplace 方程在不同坐标系下形式不同。而张量分析所寻找的,正是一种摆脱具体坐标系影响的描述几何和物理规律的手段及其运算法则。

    定义

    一个物理量 T i j T_{ij} Tij ,如果在坐标变换下满足下式:

    T i j ′ = R i k R j l T k l ≡ ∑ k ∑ l R i k R j l T k l T ⃗ ⃗ ′ = R T ⃗ ⃗ R T \begin{aligned} T_{ij}^\prime=R_{ik}R_{jl}T_{kl}&\equiv\sum_k \sum_l R_{ik}R_{jl}T_{kl}\\ \vec{\vec{T}}{}'&=\boldsymbol{R}\vec{\vec{T}}\boldsymbol{R}^T \end{aligned} Tij=RikRjlTklT klRikRjlTkl=RT RT
    就称它是一个 二阶张量 ,记为 T ⃗ ⃗ \vec{\vec{T}} T
    这个定义可以推广到 n n n 阶张量,它有 n n n 个指标、 n 2 n^2 n2 个分量,满足变换关系 T i 1 i 2 … i n = R i 1 j 1 ⋯ R i n j n T j 1 j 2 … j n ≡ ∑ j 1 , j 2 , ⋯   , j n R i 1 j 1 ⋯ R i n j n T j 1 j 2 … j n T_{i_1i_2\dots i_n}=R_{i_1j_1}\cdots R_{i_nj_n}T_{j_1j_2\dots j_n}\equiv\sum_{j_1,j_2,\cdots,j_n}R_{i_1j_1}\cdots R_{i_nj_n}T_{j_1j_2\dots j_n} Ti1i2in=Ri1j1RinjnTj1j2jnj1,j2,,jnRi1j1RinjnTj1j2jn

    并矢

    将两个矢量并写,就得到一种有两个下标的量 A B ≜ D ⃗ ⃗ : A i B j = D i j \boldsymbol{A}\boldsymbol{B}\triangleq\vec{\vec{D}}:A_iB_j=D_{ij} ABD :AiBj=Dij ,它是一个张量。

    三阶全反对称张量

    或者称为Levi-Civita符号: ε i j k \varepsilon_{ijk} εijk ,利用它可以方便地表示矢量的外积。在前面已经讨论过:

    ε i j k = { 1 , 2 ∣ σ ( i j k ) − 1 , 2 ∤ σ ( i j k ) 0 , e l s e \varepsilon_{ijk}= \begin{cases}1,\quad&2\mid\sigma(ijk)\\ -1,\quad&2\nmid\sigma(ijk)\\ 0,\quad&else\end{cases} εijk=1,1,0,2σ(ijk)2σ(ijk)else
    作为一个三阶张量,它连续作用于两个矢量,得到一个新的矢量: ε i j k A j B k = ( A × B ) i \varepsilon_{ijk}A_jB_k=(\boldsymbol{A}\times\boldsymbol{B})_i εijkAjBk=(A×B)i

    以这种方式可以推广出 N N N 维矢量空间中的一种运算,它作用在 N − 1 N-1 N1 个矢量上,结果是一个矢量。

    张量的运算

    并乘

    推广并矢的构造过程,可以由 m m m 阶张量 P P P n n n 阶张量 Q Q Q 并写得到 m + n m+n m+n 阶张量 T = P Q T=PQ T=PQ ,其中

    P i 1 i 2 ⋯ i m Q j 1 j 2 ⋯ j n = T i 1 i 2 ⋯ i m j 1 j 2 ⋯ j n P_{i_1i_2\cdots{i}_m}Q_{j_1j_2\cdots{j}_n}=T_{i_1i_2\cdots{i}_mj_1j_2\cdots{j}_n} Pi1i2imQj1j2jn=Ti1i2imj1j2jn

    缩并

    一个高阶张量,如果我们将其中的两个指标设为相同(并且求和),得到张量比原先张量少两阶。这个过程称为张量的 缩并 。例如二阶张量缩并成一个标量。

    点积是一种特殊的缩并。它定义为

    P ⃗ ⃗ ⋅ Q ⃗ ⃗ = P i j Q j k e ^ i e ^ k \vec{\vec{P}}\cdot\vec{\vec{Q}}=P_{ij}Q_{jk}\boldsymbol{\hat e}_i\boldsymbol{\hat e}_k P Q =PijQjke^ie^k

    矢量分析的张量视角

    重写一些矢量恒等式

    A × ( B × C ) = A ⋅ ( C B − B C ) \boldsymbol{A}\times(\boldsymbol{B}\times\boldsymbol{C})=\boldsymbol{A}\cdot(\boldsymbol{CB}-\boldsymbol{BC}) A×(B×C)=A(CBBC)

    联想到对易式的恒等式 [ A , [ B , C ] ] = [ A , B C − C B ] [A,[B,C]]=[A,BC-CB] [A,[B,C]]=[A,BCCB] ,似有相似性。

    微分

    在张量的意义下,微分算子 ∇ \nabla 作用在场上的结果可以作进一步解释,即一个并矢。例如,

    • 标量场的梯度 ∇ φ = e ^ i ∂ i φ \nabla\varphi=\boldsymbol{\hat e}_i\partial_i\varphi φ=e^iiφ 是一个矢量;
    • ∇ \nabla 作用于一个矢量场 A \boldsymbol{A} A 得到一个二阶张量场 ∇ A \nabla\boldsymbol{A} A 。(它缩并得到的就是 ∇ ⋅ A \nabla\cdot\boldsymbol{A} A ,一个标量场)

    例如, ∇ x = e ^ i e ^ j ∂ i x j = δ i j e ^ i e ^ j \nabla\boldsymbol{x}=\boldsymbol{\hat e}_i\boldsymbol{\hat e}_j\partial_ix_j=\delta_{ij}\boldsymbol{\hat e}_i\boldsymbol{\hat e}_j x=e^ie^jixj=δije^ie^j

    积分
    高斯定理

    设一个张量场 T \boldsymbol{T} T ,则并矢 ∇ T \nabla\boldsymbol{T} T 的缩并 ∂ i T … i … \partial_iT_{\dots i\dots} iTi 在某区域中的积分等于张量在该区域边界上的面积分:

    ∫ D d 3 x ∂ i T … i … ( x ) = ∫ ∂ D d a i T … i … ( x ) \int_D {\rm d}^3\boldsymbol{x}\partial_iT_{\dots i\dots}(\boldsymbol{x})=\int_{\partial D}{\rm d}\boldsymbol{a}_iT_{\dots i\dots}(\boldsymbol{x}) Dd3xiTi(x)=DdaiTi(x)

    式子左边的 ∂ i \partial_i i 作用在整个张量上;右边是并矢的缩并。

    T T T 是一阶张量场时,上述结论就是散度定理: ∫ V d 3 x ∇ ⋅ A = ∫ ∂ V d a ⋅ A \int\limits_V{\rm d}^3\boldsymbol{x}\nabla\cdot\boldsymbol{A}=\int\limits_{\partial V}{\rm d}\boldsymbol{a}\cdot\boldsymbol{A} Vd3xA=VdaA

    斯托克斯定理

    设闭合曲面S由闭合曲线C围成,则对于任意张量场有

    ε i j k ∫ S ( d a ) i ∂ j ( ∗ ) k = ∮ C d ( l ) i ( ∗ ) i \varepsilon_{ijk}\int_S({\rm d}\boldsymbol{a})_i\partial_j(*)_k=\oint_{C}{\rm d}(\boldsymbol{l})_i(*)_i εijkS(da)ij()k=Cd(l)i()i
    例如放入一个矢量场 A \boldsymbol{A} A 就可以得到安培环路定理 ∫ S d S ⋅ ( ∇ × A ) = ∮ C d l ⋅ A \int\limits_S{\rm d}\boldsymbol{S}\cdot(\nabla\times\boldsymbol{A})=\oint\limits_C{\rm d}\boldsymbol{l}\cdot\boldsymbol{A} SdS(×A)=CdlA

    理论力学的相关内容

    广义坐标、拉格朗日量和作用量

    多自由度的力学体系的状态由一组 广义坐标 描述,记为 ( q 1 , q 2 , ⋅ ⋅ ⋅ , q N ) (q_1, q_2, · · · , q_N) (q1,q2,,qN) 。其中独立的广义坐标的个数 N N N 称为该力学体系的自由度。有时为了简化记号,这一组广义坐标统一记为 q q q

    一个力学体系的 拉格朗日量 一般是它的广义坐标、广义坐标的一阶时间微商和时间的函数

    L = L ( q ; q ˙ ; t ) L=L(q;\dot{q};t) L=L(q;q˙;t)

    如果系统的拉格朗日量中含有广义坐标的更高阶时间微商,这样的理论被称为高阶导数理论。这样的理论对于经典体系而言可以自洽地存在,但是如果考虑体系的量子化,高阶导数理论一般无法用正定的Hilbert 空间来自洽地量子化。

    体系的 作用量 是它拉格朗日量对时间的积分

    S = ∫ t i t f L ( q ; q ˙ ; t )   d t S=\int_{t_i}^{t_f}L(q;\dot{q};t)\,{\rm d}t S=titfL(q;q˙;t)dt
    其中积分限为关心的时间起点和终点;力学体系在起点和终点的广义坐标 q i q_i qi q f q_f qf 称为体系的 端点

    矢量场的亥姆霍兹定理

    矢量场可以由其散度和旋度唯一确定。

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值