全连接层的作用

转自1.8w字长文解析Resnet50的算法原理 - 知乎

全连接的作用,说的学术专业一点,就是把卷积层学到的特征空间映射到样本标记空间。说的通俗易懂点,就是把卷积学到的一堆特征互相融合一下,变成样本(比如一只猫)的代表。

在使用Resnet50对ImageNet2012数据集进行分类时,最终完成某个图片的分类,全连接层会输出一个值,每个值都对应一个索引。在ImageNet 中,281-287都代表猫。比如282这个索引,代表的是一只虎猫,而这个索引,就是把所有的虎猫的特征进行了融合后计算而来的。

  • 281 n02123045 猫, tabby, tabby cat
  • 282 n02123159 猫, tiger cat
  • 283 n02123394 猫, Persian cat
  • 284 n02123597 猫, Siamese cat, Siamese
  • 285 n02124075 猫, Egyptian cat
  • 286 n02125311 猫, cougar, puma, catamount, mountain lion, painter, panther, Felis concolor
  • 287 n02127052 猫, lynx, catamount

加餐

看到这,可能有人会问,既然全连接层处理的特征比卷积层信息更丰富,那为什么在CNN网络中进行图像识别和分类时,我们还大量的使用卷积而不全部使用全连接呢?

答案很简单。全连接由于连接了上一层所有的节点,需要的模型参数更多,计算更密集。一个普通的卷积神经网络,如果用全连接来实现,你可以试试,分分钟挤爆你的CPU,甚至你的显卡。


转自知乎

作者:魏秀参

链接:https://www.zhihu.com/question/41037974/answer/150522307
 

全连接层到底什么用?我来谈三点。

  • 全连接层(fully connected layers,FC)在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。在实际使用中,全连接层可由卷积操作实现:对前层是全连接的全连接层可以转化为卷积核为1x1的卷积;而前层是卷积层的全连接层可以转化为卷积核为hxw的全局卷积,h和w分别为前层卷积结果的高和宽(注1)。
  • 目前由于全连接层参数冗余(仅全连接层参数就可占整个网络参数80%左右),近期一些性能优异的网络模型如ResNet和GoogLeNet等均用全局平均池化(global average pooling,GAP)取代FC来融合学到的深度特征,最后仍用softmax等损失函数作为网络目标函数来指导学习过程。需要指出的是,用GAP替代FC的网络通常有较好的预测性能。具体案例可参见我们在ECCV'16(视频)表象性格分析竞赛中获得冠军的做法:「冠军之道」Apparent Personality Analysis竞赛经验分享 - 知乎专栏 ,project:Deep Bimodal Regression for Apparent Personality Analysis
  • 在FC越来越不被看好的当下,我们近期的研究(In Defense of Fully Connected Layers in Visual Representation Transfer)发现,FC可在模型表示能力迁移过程中充当“防火墙”的作用。具体来讲,假设在ImageNet上预训练得到的模型为

    \mathcal{M}

    ,则ImageNet可视为源域(迁移学习中的source domain)。微调(fine tuning)是深度学习领域最常用的迁移学习技术。针对微调,若目标域(target domain)中的图像与源域中图像差异巨大(如相比ImageNet,目标域图像不是物体为中心的图像,而是风景照,见下图),不含FC的网络微调后的结果要差于含FC的网络。因此FC可视作模型表示能力的“防火墙”,特别是在源域与目标域差异较大的情况下,FC可保持较大的模型capacity从而保证模型表示能力的迁移。(冗余的参数并不一无是处。)

注1: 有关卷积操作“实现”全连接层,有必要多啰嗦几句。

以VGG-16为例,对224x224x3的输入,最后一层卷积可得输出为7x7x512,如后层是一层含4096个神经元的FC,则可用卷积核为7x7x512x4096的全局卷积来实现这一全连接运算过程,其中该卷积核参数如下:

“filter size = 7, padding = 0, stride = 1, D_in = 512, D_out = 4096”

经过此卷积操作后可得输出为1x1x4096。

如需再次叠加一个2048的FC,则可设定参数为“filter size = 1, padding = 0, stride = 1, D_in = 4096, D_out = 2048”的卷积层操作。

-----------------------------------------------------------------分割线------------------------------------------------------------------------------------------------------

作者:知乎用户
链接:https://www.zhihu.com/question/41037974/answer/150585634

 

在卷积神经网络尚未火热的年代,人们使用haar/lbp + adaboost级连的组合方式检测人脸,hog+svm的组合方式检测行人。这种传统的目标检测方法一个认知上的优势就是: 模块的功能明确,划分得很清晰,符合人们的理解方式。其中,haar,lbp,hog等手工设计的特征提取算子用于提取特征,adaboost,svm用于对提取的特征分类。

而早期的全连接神经网络,就是属于用于对提取的特征进行分类的模块,我们也可以同样将神经网络替换掉adaboost,svm用于分类。

后来将神经网络用于图像分类中,面对早期的小分辨率图片,我们依旧可以使用特征提取+神经网络分类的模式,也可以直接将每个像素点作为特征输入用于神经网络的分类。但面对后期的大分辨率图像,如果依旧使用逐像素点输入的方式,很明显将会导致全连接中的权值过于稀疏,造成模型训练的困难。

而卷积神经网络中conv+relu(早期为sigmoid)+pooling(以下称三剑客)的组合,不仅可以替代手工设计特征算子的繁琐,而且局部感受野+权值共享的设计思想也能避免全连接网络中的种种弊端。此时人们将三剑客的组合视为特征提取的过程,如果按照早期人们特征提取+分类的设计思路,那么分类使用全连接的设计方式,就可以刚好实现了一个end-to-end的架构,也即早起卷积神经网络的原型。

但必须明白的是,虽然模型完成了一个end-to-end的设计架构,可以直接用于训练和分类,但在人们的认知上,特征提取和分类依然是分开的,也就是说三剑客用于特征提取,全连接用于分类。

后来随着更优秀分类网络的出现(alexnet,vgg等),人们不再仅仅满足于分类准确率的提升,面对动辄两三百M的模型,人们思考能否减少模型的大小。人们通过研究发现,在包含全连接的网络中,全连接的参数占据了所有参数中的大部分比例,这样使得精简全连接参数变得刻不容缓。

于是一部分优秀的人们想到了使用svd等方式减少参数,另一部分优秀的人们开始思考: 是否真的需要使用全连接层,或者有无可以替代全连接层的方法?

于是就出现了如nin,squeezenet中,直接使用global average pooling的方式,直接替代全连接层。人们发现不使用全连接层,模型的检准率并没有降低,而模型的大小却极大的减少(当然了,也包括以上网络中其他模块优化的功劳,如1*1卷积的使用等)。

另一方面,同样在nin,以及用于图像分类的fcn中,人们发现使用1*1卷积,也可以达到与全连接层同样的功效,依然能保证同样的检准率(经评论区

的提醒,1*1卷积的使用,对比fc并不能 减少模型参数,特此说明)。

这时候人们就又开始重新思考,全连接层在卷积神经网络中真正的作用是什么了。于是就又有了

回答中新的探索。

最后总结就是,卷积神经网络中全连接层的设计,属于人们在传统特征提取+分类思维下的一种"迁移学习"思想,但在这种end-to-end的模型中,其用于分类的功能其实是被弱化了,而全连接层参数过多的缺点也激励着人们设计出更好的模型替代之达到更好的效果。同时,也将促进我们更深入地探讨其中的奥秘。
 

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值