CRC校验(2):CRC32查表法详解、代码实现和CRC反转

对于现在的CPU来说,基本上都在硬件上实现了CRC校验。但我们还是想用软件来实现一下CRC的代码,这样可以更深入地理解里面的原理。所以这一节就来详细地解释如何使用查表法从软件上来实现CRC-32的校验。另外,CRC还有一种反转的情况,实际上反转和不反转没有什么太大的区别,主要是需求和标准的不同。

1 找规律

再来看一下上一节中的例子,被除数为100100,除数为1101的计算过程:
在这里插入图片描述
我们来找一下规律,思考一下在计算机中应该如何实现。不难发现以下规律:

  • 除数的最高位一定是1,因为我们用的是它所代表的多项式的最高阶组成的数字
  • 对于被除数来说,如果它的最高位不是1的话,就"除不动",什么都不做,左移一位,继续判断。
  • 由于做的是异或运算,所以当前的结果不一定要"减得动"被除数,只需要满足除数最高位为1,就和被除数做异或运算,然后再左移一位

2 查表法原理

如果我们要软件上实现CRC的话,要一位一位的做这些运算,效率是非常低的,所以我们就想能不能每8位计算一次,因为每个特定的数字与这个被除数的经过8次移位操作得到的异或结果都是相同的。
(1)为什么不每16位计算一次?
这样就要保存 2 16 2^{16} 216个uint16_t类型的数据,一个表格就有128KB,这比很多单片机的Flash要大了
(2)每8位计算一次的理论依据是什么
我们知道 C R C ( 0 ) = 0 CRC(0)=0 CRC(0)=0,然后由前面分析出的特性,我们可以这样理解: C R C ( A + B ) = C R C ( A ) + C R C ( B ) CRC(A+B) = CRC(A) + CRC(B) CRC(A+B)=CRC(A)+CRC(B)

  • CRC本身不满足加法结合律,一是,这里第二个CRC的初始值要为前一个CRC的结果。二是两个CRC之间的结合不是简单的加法,这里的"+"包括异或和移位。这里只是便于理解才这么写

现在举个例子,假如我们想求 C R C ( 0 × a b c d e f 12 ) CRC(0×abcdef12) CRC(0×abcdef12),他就可以等价于:
C R C ( 0 × a b c d e f 12 ) = C R C ( 0 × a b 000000 ) + C R C ( 0 × 00 c d e f 12 ) = C R C ( 0 × a b ) + C R C ( 0 × c d ) + C R C ( 0 × e f ) + C R C ( 0 × 12 ) CRC(0×abcdef12) = CRC(0×ab000000) + CRC(0×00cdef12) = CRC(0×ab) + CRC(0×cd) + CRC(0×ef) + CRC(0×12) CRC(0×abcdef12)=CRC(0×ab000000)+CRC(0×00cdef12)=CRC(0×ab)+CRC(0×cd)+CRC(0×ef)+CRC(0×12)

假如我们定义一个8位的查表表格,这样我们就可以把本来每次要进行的32次移位和异或的运算缩短为了4次。

3 CRC32代码C语言实现

3.1 CRC32表格生成

经过前面的分析,我们知道,我们就是需要给uint8_t范围内(0~255)的每一个数做一下模二除法,然后将得到的结果保存到一个类型为uint8_t、大小为256的表格中。我们只需要判断CRC的最高位是否为1,若为0则左移一位,若为1则先将crc左移1位,然后和多项式做异或运算。CRC32表格生成代码如下:

void GenerateTable(uint32_t polynomial)
{
	for (int byte = 0; byte < 256; ++byte)
	 {
		uint32_t crc = byte;
		
		for (int bit = 32; bit > 0; --bit)
		{
			if (crc & 0x80000000)
			{
				  crc = (crc << 1) ^ polynomial;
			}
			else
			{
				  crc <<= 1;
			}
		}
		crcTable[byte] = crc;
	 }
}

如果你把上面的代码和前面的例子那张图做对比的话,我相信不少人会想为什么在CRC最高位为1的时候,执行的不是crc = (crc ^ polynomial) << 1

别忘了,对于CRC32来说,它的多项式所对应的二进制是有33位的,实际上我们无法用一个uint32_t的变量来保存这个多项式。但是我们知道,CRC32的多项式的最高位一定是1,所以这里我们就保存低32位作为polynomial。当代码中CRC的最高位为1时,它与CRC32的最高位异或的结果也一定是0。所以这里就先将CRC右移一位,然后与多项式异或,这样循环32次,就得到在多项式polynomial下的byte所对应的CRC,将其存入crcTable中。

3.2 CRC查表代码实现

有了前面的表格,我们使用下面的函数就能计算长度为len的字符串msg的CRC32了,在循环中,将CRC的高八位所对应的数在CRC32表格中的结果与上次计算出来的CRC右移八位的结果进行异或,最后就得到了这个字符串的CRC结果了。

unsigned int calcMsgCRC(char *msg, unsigned int len)
{
    unsigned long crc = 0;
    for (int n = 0; n < len; n++)
    {
    	uint8_t c = msg[n] & 0xff;
        crc = crcTable[(crc >> 24) ^ c] ^ (crc << 8);
    }
    return crc;
}
  • 在某些协议的CRC算法中,CRC有一个固定的初始值,求出来CRC结果后也还需要异或一个固定数

另外,在有些场合下,比如从串口中获取最新的固件来升级系统,固件的完整性也通过CRC校验。在有的设备中没有那么大的内存将整个buffer保存下来,再计算整个buffer的CRC校验。对于这种情况,我们可以一段一段地计算CRC,然后将前一次CRC的结果赋值给函数中unsigned long crc的初始值。也就是calcMsgCRC函数的参数也要多加一个lastCRC

4 CRC反转

有时你可能会发现一些标准协议的CRC的表格和你生成的就是不一样。这可能是因为CRC有两种实现方式:

  • 非反转CRC:数据的每一位从最高位到最低位依次处理
  • 反转CRC:数据的每个字节或比特位的处理顺序可以根据需求进行反转。

4.1 CRC32的标准反转函数

对于这个反转的定义我一直没有找到,但我找到了代码,所以还是从代码中来理解一下,所谓的反转函数是如何反转的。

  • 当然,这些反转都可以自己定义,比如小端的CRC你转成大端的,每一位反转等。这里介绍的反转方法是在一些知名的协议中使用的CRC算法中用到的。
uint32_t Reverse(uint32_t value)
{
  value = ((value & 0xAAAAAAAA) >> 1) | ((value & 0x55555555) << 1);
  value = ((value & 0xCCCCCCCC) >> 2) | ((value & 0x33333333) << 2);
  value = ((value & 0xF0F0F0F0) >> 4) | ((value & 0x0F0F0F0F) << 4);
  value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8);
  value = (value >> 16) | (value << 16);
  return value;
}

(1)将value的奇数位和偶数位分别取出,并将奇数位右移1位,偶数位左移1位,然后将它们进行按位或运算。这样可以交换奇数位和偶数位的值。
(2)将value的每2位分组,其中每组的高位和低位进行比特顺序的反转。同样,采用按位与和按位或运算,将高位和低位进行交换。
(3)将value的每4位分组,同样对每组的高位和低位进行比特顺序的反转。
(4)将value的每8位分组,同样对每组的高位和低位进行比特顺序的反转。
(5)将value的高16位和低16位进行比特顺序的反转

4.2 CRC输入/输出反转

另外,我们可以选择对CRC在输入时反转,也可以选择对CRC在输出时反转,当然也可以选择都反转。所以这时候反转CRC32表格生成函数需要做小小的修改:

void GenerateTable(uint32_t polynomial, bool reflectIn, bool reflectOut)
{
    for (int byte = 0; byte < 256; ++byte)
    {
        uint32_t crc = (reflectIn ? (Reverse(uint32_t(byte)) >> 24) : byte);

        for (int bit = 32; bit > 0; --bit)
        {
            if (crc & 0x80000000)
            {
                crc = (crc << 1) ^ polynomial;
            }
            else
            {
                crc <<= 1;
            }
        }
        crcTable[byte] = (reflectOut ? Reverse(crc) : crc);
    }
}

对于反转CRC的计算函数来说(假设输入和输出都反转),要这样修改:

unsigned int calcMsgCRCReverse(char *msg, unsigned int len)
{
    unsigned long crc = 0;
    for (int n = 0; n < len; n++)
    {
        uint8_t c = msg[n] & 0xff;
        c = Reverse(c);
        crc = crcTable[(crc ^ c) & 0xFF] ^ (crc >> 8);
    }
    return Reverse(crc);
}

使用反转CRC或非反转CRC时,CRC表格的生成和查找方法也会有所不同。这两种方式在实际应用中并没有明显的性能或准确性差异,选择哪种方式主要取决于应用的需求和标准。

<think>好的,用户遇到了Git合并时本地更改会被覆盖的问题,需要解决方案。根据之前的引用资料,解决方主要有commit、stashrevert三种。首先,我得确认用户的具体情况,比如他们的本地更改是否已经完成,是否需要保留,或者是否可以丢弃。用户可能不太清楚这三种方的适用场景,需要详细解释每个选项的步骤优缺点。比如,commit适用于需要保留更改的情况,stash适合临时保存以便后续恢复,而revert则是直接撤销更改,适用于不需要保留的情况。需要结构清晰,分点说明,每个方都给出操作步骤适用场景,帮助用户理解哪种情况最适合他们。还要注意使用中文,避免技术术语过于复杂,让用户容易理解。同时,生成相关问题,可能涉及如何恢复stash的内容,或者如何避免频繁冲突等,扩展用户的知识点。另外,要确保LaTeX格式正确,但在这个问题中可能用不上数学公式,所以主要关注代码引用标识。检查引用是否正确,比如引用[^1][^2]的来源是否相关,用户提供的引用内容是否准确对应解决方案。 最后,确保回答真实可靠,操作步骤准确无误,避免误导用户。可能还需要提醒用户根据具体情况选择方,比如如果有未完成的实验性代码,stash可能是更好的选择,而如果是确定要保留的修改,则应该commit。</think>要解决Git合并时本地更改被覆盖的问题,可根据不同场景选择以下三种方: ### 一、提交本地更改(commit) **适用场景**:当本地更改已测试通过且需要保留到版本历史中。 **操作步骤**: 1. 将改动添加到暂存区: ```bash git add . # 添加所有文件 # 或指定文件 git add file1.txt file2.py ``` 2. 提交更改并添加描述: ```bash git commit -m "完成用户登录模块优化" ``` 3. 执行合并操作: ```bash git merge origin/main ``` **优点**:保留完整的开发记录,便于后续追溯[^1]。 ### 二、暂存更改(stash) **适用场景**:需要临时保存未完成的修改(如调试代码),优先处理合并操作。 **操作步骤**: 1. 保存当前工作状态: ```bash git stash # 可选添加备注 git stash save "用户登录模块调试代码" ``` 2. 查看暂存记录列表: ```bash git stash list ``` 3. 合并远程分支: ```bash git merge origin/main ``` 4. 恢复暂存内容: ```bash git stash pop # 恢复并删除最近一次暂存 # 或指定特定暂存 git stash apply stash@{1} ``` **优点**:保持工作目录整洁,特别适合处理紧急合并任务[^2]。 ### 三、撤销本地更改(revert) **适用场景**:本地修改可丢弃(如实验性代码或错误修改)。 **操作步骤**: 1. 撤销所有未提交的修改: ```bash git checkout -- . # 全部文件 # 或指定文件 git checkout -- file1.txt ``` 2. 执行合并操作: ```bash git merge origin/main ``` **风险提示**:此操作不可逆,需确认文件无需保留。 --- ### 对比决策表 | 方 | 保留记录 | 可恢复性 | 适用阶段 | |---------|----------|----------|------------------| | commit | ✅ | ✅ | 功能开发完成时 | | stash | ❌ | ✅ | 开发中途临时切换 | | revert | ❌ | ❌ | 放弃无效修改 | ### 扩展应用场景 - 当存在多个暂存时,可用`git stash list`查看记录,通过`git stash apply stash@{n}`精准恢复 - 合并后出现冲突时,可使用`git mergetool`可视化工具解决冲突 - 长期分支开发推荐使用`git rebase`保持提交历史线性
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tilblackout

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值