tensorflow中tf.Variable() 方法和 tf.get_variable()方法的区别

除了用法稍有不同外,二者本质区别在于,当出现name冲突时处理不同。

1. tf.Variable() 方法

例:我们让两个变量name相同,看tensorflow怎么处理。
输入:

var1 = tf.Variable(initial_value=0.0, name="var")
var2 = tf.Variable(initial_value=0.1, name="var")
print(var1.name)
print(var2.name)
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(var1.eval())
    print(var2.eval())

输出:

var:0
var_1:0
0.0
0.1

可以看到,虽然我们把两个变量名字都取作‘var’,但是第二个被自动重命名为‘var_1’。
结论:使用 tf.Variable() 方法时不用担心名字冲突,框架会自动处理。

2. tf.get_variable()方法

根据在tensorflow命名空间内是否开启自动变量复用
(reuse=tf.AUTO_REUSE)分为两种情况:

2.1. 不开启变量复用

输入:

with tf.variable_scope("scope0"):
    var1 = tf.get_variable("var", initializer=tf.constant(0.0))
    var2 = tf.get_variable("var", initializer=tf.constant(1.0))

输出:报错
错误为:with tf.variable_scope("scope1", reuse=tf.AUTO_REUSE):

2.2. 开启变量复用

输入:

with tf.variable_scope("scope1", reuse=tf.AUTO_REUSE):
    var1 = tf.get_variable("var", initializer=tf.constant(0.0))
    var2 = tf.get_variable("var", initializer=tf.constant(1.0))
    print(var1.name)
    print(var2.name)
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        print(var1.eval())
        print(var2.eval())

输出:

scope1/var:0
scope1/var:0
0.0
0.0  # 还是0.0,还是第一次声明的值

结论:开启复用后,tf.get_variable() 生成的变量,会被复用,但值是第一次赋值的那个值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值