除了用法稍有不同外,二者本质区别在于,当出现name冲突时处理不同。
1. tf.Variable() 方法
例:我们让两个变量name相同,看tensorflow怎么处理。
输入:
var1 = tf.Variable(initial_value=0.0, name="var")
var2 = tf.Variable(initial_value=0.1, name="var")
print(var1.name)
print(var2.name)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(var1.eval())
print(var2.eval())
输出:
var:0
var_1:0
0.0
0.1
可以看到,虽然我们把两个变量名字都取作‘var’,但是第二个被自动重命名为‘var_1’。
结论:使用 tf.Variable() 方法时不用担心名字冲突,框架会自动处理。
2. tf.get_variable()方法
根据在tensorflow命名空间内是否开启自动变量复用
(reuse=tf.AUTO_REUSE)分为两种情况:
2.1. 不开启变量复用
输入:
with tf.variable_scope("scope0"):
var1 = tf.get_variable("var", initializer=tf.constant(0.0))
var2 = tf.get_variable("var", initializer=tf.constant(1.0))
输出:报错
错误为:with tf.variable_scope("scope1", reuse=tf.AUTO_REUSE):
2.2. 开启变量复用
输入:
with tf.variable_scope("scope1", reuse=tf.AUTO_REUSE):
var1 = tf.get_variable("var", initializer=tf.constant(0.0))
var2 = tf.get_variable("var", initializer=tf.constant(1.0))
print(var1.name)
print(var2.name)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(var1.eval())
print(var2.eval())
输出:
scope1/var:0
scope1/var:0
0.0
0.0 # 还是0.0,还是第一次声明的值
结论:开启复用后,tf.get_variable() 生成的变量,会被复用,但值是第一次赋值的那个值。