📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)数据挖掘在互联网金融风险模型中的应用背景
随着计算机技术和互联网的飞速发展,互联网金融迅速崛起,成为现代金融体系的重要组成部分。互联网金融以其便捷、高效的特点,吸引了大量用户,但也带来了诸多风险问题,其中信用违约风险尤为突出。信用违约风险不仅影响平台的正常运营,还可能引发系统性金融风险,因此,如何利用数据挖掘技术从海量、繁杂的用户信息中提取具有代表性的信息,构建有效的风险模型,成为互联网金融健康发展的关键。
本文以国内某互联网平台公开的用户借贷数据为研究对象,利用数据挖掘技术构建风险模型,旨在提高违约用户的预测准确率,降低信用风险。具体来说,本文采用随机森林、相关系数等方法进行特征选择,从中选取重要的用户特征信息,构建单一模型和集成模型,并通过多种方法对模型进行优化和评估。
-
数据准备与预处理:首先,从互联网金融平台获取用户借贷数据,包括用户基本信息、借款记录、还款记录、信用评分等多维度数据。数据预处理阶段包括数据清洗、缺失值处理、异常值检测和标准化等步骤,确保数据的质量和一致性。例如,对于缺失值较多的特征,可以采用插值法或删除法进行处理;对于异常值,可以通过箱线图或Z-score方法进行检测和处理。
-
特征选择:特征选择是构建有效风险模型的关键步骤。本文采用随机森林和相关系数两种方法进行特征选择。随机森林通过计算特征的重要性得分,从中选择得分较高的特征;相关系数则通过计算特征与目标变量(是否违约)之间的相关性,选择相关性较高的特征。通过这两种方法的结合,可以更全面地筛选出对违约预测具有重要影响的特征。
-
模型构建:本文分别构建了单一模型和集成模型。单一模型包括逻辑回归模型和BP神经网络模型,集成模型包括随机森林模型、Xgboost模型和Lightgbm模型。具体来说,逻辑回归模型通过线性组合特征,计算违约概率;BP神经网络模型通过多层神经元结构,捕捉非线性关系;随机森林模型通过多个决策树的集成,提高模型的鲁棒性;Xgboost模型和Lightgbm模型则是基于梯度提升树的集成模型,具有高效的计算能力和强大的预测能力。
(2)模型优化与平衡化处理
为了进一步提高模型的预测能力,本文采用了多种优化方法,包括模型超参数调优和数据平衡化处理。
-
模型超参数调优:模型的性能很大程度上取决于超参数的设置。本文采用贝叶斯优化算法对模型的超参数进行调优。贝叶斯优化算法通过构建目标函数的代理模型,逐步逼近最优解,具有较高的优化效率。具体来说,对于逻辑回归模型,可以优化正则化参数和学习率;对于BP神经网络模型,可以优化隐层节点数和激活函数;对于随机森林模型,可以优化树的数量和最大深度;对于Xgboost模型和Lightgbm模型,可以优化学习率、树的数量和最大深度等参数。
-
数据平衡化处理:金融数据中普遍存在正负样本分布不平衡的问题,即违约用户数量远少于非违约用户数量。这种不平衡会导致模型在训练过程中偏向多数类样本,从而影响少数类样本的预测效果。本文采用基于加权Sm