椭球面上的几种曲率半径

1 子午圈曲率半径

M = ∣ d s d B ∣ = ∣ d s d x ⋅ d x d B ∣ M = \left| {{{ds} \over {dB}}} \right| = \left| {{{ds} \over {dx}} \cdot {{dx} \over {dB}}} \right| M= dBds = dxdsdBdx
d s = ( d x ) 2 + ( d y ) 2 ⇒ d s d x = 1 + ( d y d x ) 2 = 1 + cot ⁡ 2 B ds = \sqrt {{{(dx)}^2} + {{(dy)}^2}} \Rightarrow {{ds} \over {dx}} = \sqrt {1 + {{({{dy} \over {dx}})}^2}} = \sqrt {1 + {{\cot }^2}B} ds=(dx)2+(dy)2 dxds=1+(dxdy)2 =1+cot2B
x = N cos ⁡ B = a W cos ⁡ B = a cos ⁡ B 1 − e 2 sin ⁡ 2 B x = N\cos B = {a \over W}\cos B = {{a\cos B} \over {\sqrt {1 - {e^2}{{\sin }^2}B} }} x=NcosB=WacosB=1e2sin2B acosB
根据上式对 B B B求导得
d x d B = − a sin ⁡ B W 3 ( 1 − e 2 ) {{dx} \over {dB}} = - {{a\sin B} \over {{W^3}}}(1 - {e^2}) dBdx=W3asinB(1e2)
从而有
M = 1 + cot ⁡ 2 B ∙ a sin ⁡ B W 3 ( 1 − e 2 ) = a ( 1 − e 2 ) W 3 M = \sqrt {1 + {{\cot }^2}B} \bullet {{a\sin B} \over {{W^3}}}\left( {1 - {e^2}} \right) = {{a\left( {1 - {e^2}} \right)} \over {{W^3}}} M=1+cot2B W3asinB(1e2)=W3a(1e2)
子午圈曲率半径为
M = a ( 1 − e 2 ) W 3 = c V 3 M = {{a\left( {1 - {e^2}} \right)} \over {{W^3}}} = {c \over {{V^3}}} M=W3a(1e2)=V3c

特点: M M M随纬度增加而增大, c c c为极点处的子午圈曲率半径。

2 卯酉圈曲率半径

N = a W = c V N = {a \over W} = {c \over V} N=Wa=Vc
特点: N N N随纬度的增加而增加, c c c为极点处的卯酉圈曲率半径,极点处 M = N M=N M=N

3 平均曲率半径

R = M N R=\sqrt{MN} R=MN

4 M M M N N N R R R之间的关系

N>R>M,即卯酉圈曲率半径最大,子午圈曲率半径最小

曲率半径表达式特点
N(卯酉圈) c V {c \over V} Vc a ( 1 − e 2 ) 0 W 1 {{a{{\left( {1 - {e^2}} \right)}^0}} \over {{W^1}}} W1a(1e2)0N随纬度的增加而增加,c为极点处的卯酉圈曲率半径,极点处M=N
R(平均) c V 2 {c \over {{V^2}}} V2c a ( 1 − e 2 ) 1 W 2 {{a{{\left( {1 - {e^2}} \right)}^1}} \over {{W^2}}} W2a(1e2)1
M(子午圈) c V 3 {c \over {{V^3}}} V3c a ( 1 − e 2 ) 2 W 3 {{a{{\left( {1 - {e^2}} \right)}^2}} \over {{W^3}}} W3a(1e2)2M随纬度增加而增大,c为极点处的子午圈曲率半径
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
在Matlab中,可以使用曲率函数来计算椭球面曲率曲率是描述曲线或曲面弯曲程度的量度。对于椭球面曲率可以通过计算曲率半径来表示。曲率半径是指曲线或曲面上某一点处的曲率的倒数。 要计算椭球面曲率,可以使用以下步骤: 1. 定义椭球的参数,例如长轴、短轴和中心点。 2. 使用椭球的参数创建一个椭球面的数学模型。 3. 在所需的点上计算曲率。可以使用曲率函数来计算曲率半径。 以下是一个示例代码,演示如何在Matlab中计算椭球面曲率: ```matlab % 定义椭球的参数 a = 5; % 长轴 b = 3; % 短轴 center = \[0, 0, 0\]; % 中心点 % 创建椭球面的数学模型 \[x, y, z\] = ellipsoid(center(1), center(2), center(3), a, b, b, 100); % 在所需的点上计算曲率 point = \[1, 2, 3\]; % 椭球面上的某一点 \[curvature, principalCurvatures, principalDirections\] = surfature(x, y, z); curvatureAtPoint = interp3(x, y, z, curvature, point(1), point(2), point(3)); % 显示结果 disp(\['椭球面上点(', num2str(point), ')处的曲率为: ', num2str(curvatureAtPoint)\]); ``` 请注意,这只是一个示例代码,具体的椭球面参数和计算方法可能会根据实际情况有所不同。你可以根据自己的需求进行调整和修改。 #### 引用[.reference_title] - *1* *2* *3* [curvature(参数方程求曲率公式)](https://blog.csdn.net/weixin_39960920/article/details/115814130)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tingyuweilou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值