捷联惯导系统学习3.1(地球形状描述)

1.地球的三种模型:
(1)近似为圆,半径R=6371
(2)近似为旋转椭球体,椭圆度约为 1 300 \frac{1}{300} 3001长短半轴相差21km(常用)
(3)近似成三轴椭球体,赤道为椭圆,长短轴相差60m,椭圆度约为 1 100000 \frac{1}{100000} 1000001
在这里插入图片描述

2.子午圈椭圆:
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200908104031680.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L定义:
O:为地心;Oz:指向北极;Ox:指向本初子午线与赤道交点;Oy,指向90度经线。
ECEF(earth-centered earth-fixed)坐标系与地球固联,随地球自转
PO:与x轴夹角, ϕ \phi ϕ称为地心纬度
PQ(过P做椭圆垂线):与x轴夹角L为地理维度,即(latitude)
椭圆方程:
x 2 R e 2 + y 2 R p 2 = 1 \frac{x^2}{Re^2}+\frac{y^2}{Rp^2}=1 Re2x2+Rp2y2=1
椭圆扁率(椭圆度,flattening):
f = R e − R p R e f=\frac{Re-Rp}{Re} f=ReReRp
椭圆偏心率(第一偏心率)(eccentricity):
e = R e 2 − R p 2 R e e=\frac{\sqrt{Re^2-Rp^2}}{Re} e=ReRe2Rp2
第二偏心率(eccentricity):
e ′ = R e 2 − R p 2 R p e'=\frac{\sqrt{Re^2-Rp^2}}{Rp} e=RpRe2Rp2
地理维度与地心纬度偏差(推导略):
t a n Δ L = t a n ( L − ϕ ) = e 2 s i n 2 L 2 ( 1 − e 2 s i n 2 L ) tan\Delta L=tan(L-\phi)=\frac{e^2sin2L}{2(1-e^2sin^2L)} tanΔL=tan(Lϕ)=2(1e2sin2L)e2sin2L
L ≈ f s i n 2 L ( 当 Δ L 和 e 为 小 量 时 ) L\approx fsin2L(当\Delta L和e为小量时) Lfsin2L(ΔLe)
当 取 f = 1 298.257 纬 度 L = 4 5 。 最 大 偏 差 值 Δ L = 11. 5 ′ 当取f=\frac{1}{298.257} 纬度L=45^。最大偏差值\Delta L=11.5' f=298.2571L=45ΔL=11.5

3.椭球的曲率半径:
法截面:
即:包含椭球面点P的、椭球的切平面
子午圈:
法截面上点P是北极点或者南极点
卯酉(mao you)圈:
法截面垂直于子午圈
椭球上某点P的椭球曲率半径(A为法截面与子午面的夹角):
R A = R e ( 1 − e 2 s i n L ) ( 1 + e ′ c o s 2 A c o s 2 L ) R_A=\frac{Re}{\sqrt{(1-e^2sinL)}(1+e'cos^2Acos^2L)} RA=(1e2sinL) (1+ecos2Acos2L)Re
特殊的:
子午圈主曲率半径: R M = R A = 0 = R e ( 1 − e 2 ) ( 1 − e 2 s i n 2 L ) 3 / 2 R_M=R_{A=0}=\frac{Re(1-e^2)}{(1-e^2sin^2L)^{3/2}} RM=RA=0=(1e2sin2L)3/2Re(1e2)
卯酉圈主曲率半径: R N = R A = π 2 = R e ( 1 − e 2 s i n 2 L ) R_N=R_{A=\frac{\pi}{2}}=\frac{Re}{\sqrt{(1-e^2sin^2L)}} RN=RA=2π=(1e2sin2L) Re

4.大地坐标系与位置矩阵(已知载体线速度和地表曲率求大地坐标系的角速度):
在这里插入图片描述

重要参数说明:

P ( x 0 , y 0 , z 0 ) 坐 标 系 位 于 地 球 表 面 , z 轴 垂 直 于 地 表 , x 轴 方 向 为 该 点 所 在 纬 度 平 面 的 切 线 ( 顺 时 针 方 向 为 正 ) , y 轴 方 向 为 该 点 所 在 经 度 度 平 面 的 切 线 ( 顺 时 针 方 向 为 正 ) P(x0,y0,z0)坐标系位于地球表面,z轴垂直于地表,x轴方向为该点所在纬度平面的切线(顺时针方向为正),y轴方向为该点所在经度度平面的切线(顺时针方向为正) P(x0,y0,z0)zx线y线
R N = R N R_N=RN RN=RN为卯酉面曲率半径
R M = R M R_M=RM RM=RM子午圈曲率半径
O g O_g Og为地表坐标系在点P正上方,高度为 h h h的点
大 地 坐 标 系 为 ( λ , L , h ) 大地坐标系为(\lambda,L,h) (λ,L,h):经度,纬度,高度
λ ˙ = l a m b d a \dot\lambda=lambda λ˙=lambda为经度变化量
L ˙ = L V \dot L=LV L˙=LV为纬度变化量
V E = V x V_E=V_x VE=Vx速度在x轴的分量,东向速度
V N = V y V_N=V_y VN=Vy速度在y轴的分量,北向速度
因为 P x 0 轴 Px_0轴 Px0与纬圈相切,所以 v x 0 v_{x0} vx0只会引起经度变化即: λ ˙ = v x 0 x = v x 0 R N c o s L \dot\lambda=\frac{v_{x0}}{x}=\frac{v_{x0}}{R_NcosL} λ˙=xvx0=RNcosLvx0
因为 P y 0 轴 Py_0轴 Py0与经圈相切,所以 v x 0 v_{x0} vx0只会引起经度变化即: λ ˙ = v y 0 y = v y 0 R M \dot\lambda=\frac{v_{y0}}{y}=\frac{v_{y0}}{R_M} λ˙=yvy0=RMvy0
O g O_g Og点与P点的曲率存在如下关系 v x 0 R N = v x R N + h \frac{v_{x0}}{R_N}=\frac{v_x}{R_N+h} RNvx0=RN+hvx; v y 0 R M = v y R M + h \frac{v_{y0}}{R_M}=\frac{v_y}{R_M+h} RMvy0=RM+hvy求得
λ ˙ = v x ( R N + h ) c o s L \dot\lambda=\frac{v_{x}}{(R_N+h)cosL} λ˙=(RN+h)cosLvx
L ˙ = v y R M + h \dot L=\frac{v_{y}}{R_M+h} L˙=RM+hvy
h ˙ = v z \dot h=v_z h˙=vz
已知地理坐标到地球坐标系的转换矩阵(称位置矩阵)(绕地球坐标系的z轴转 − π 2 -\frac{\pi}{2} 2π,再绕y轴转 − π 2 + L -\frac{\pi}{2}+L 2π+L,再绕z轴转 λ \lambda λ
C g e = [ c o s ( − λ ) s i n ( − λ ) 0 − s i n ( − λ ) s i n ( − λ ) 0 0 0 1 ] [ c o s ( − ( π 2 − L ) ) 0 − s i n ( − ( π 2 − L ) ) 0 1 0 s i n ( − ( π 2 − L ) ) 0 c o s ( − ( π 2 − L ) ) ] × [ c o s ( − π 2 ) s i n ( − π 2 ) 0 − s i n ( − π 2 ) s i n ( − π 2 ) 0 0 0 1 ] C_g^e=\left[\begin{matrix} cos(-\lambda)&sin(-\lambda)&0\\ -sin(-\lambda)&sin(-\lambda)&0\\ 0&0&1\\ \end{matrix}\right]\left[\begin{matrix} cos(-(\frac{\pi}{2}-L))&0&-sin(-(\frac{\pi}{2}-L))\\ 0&1&0\\ sin(-(\frac{\pi}{2}-L))&0&cos(-(\frac{\pi}{2}-L))\\ \end{matrix}\right]\times\left[\begin{matrix} cos(-\frac{\pi}{2})&sin(-\frac{\pi}{2})&0\\ -sin(-\frac{\pi}{2})&sin(-\frac{\pi}{2})&0\\ 0&0&1\\ \end{matrix}\right] Cge=cos(λ)sin(λ)0sin(λ)sin(λ)0001cos((2πL))0sin((2πL))010sin((2πL))0cos((2πL))×cos(2π)sin(2π)0sin(2π)sin(2π)0001
= [ − s i n ( λ ) − s i n L c o s λ c o s L c o s λ c o s ( λ ) − s i n L s i n λ c o s L s i n λ 0 c o s L s i n L ] =\left[\begin{matrix} -sin(\lambda)&-sinLcos\lambda&cosLcos\lambda\\ cos(\lambda)&-sinLsin\lambda&cosLsin\lambda\\ 0&cosL&sinL\\ \end{matrix}\right] =sin(λ)cos(λ)0sinLcosλsinLsinλcosLcosLcosλcosLsinλsinL
求微分:
C ˙ g e = C g e ( [ − L ˙ λ ˙ c o s L λ ˙ s i n L ] × ) \dot C_g^e=C_g^e(\left[\begin{matrix} -\dot L\\ \dot \lambda cosL\\ \dot \lambda sinL\\ \end{matrix}\right]\times) C˙ge=Cge(L˙λ˙cosLλ˙sinL×)
根据 C ˙ g e = C g e ∗ w × \dot C_g^e= C_g^e*w\times C˙ge=Cgew×
求得 w = [ − L ˙ λ ˙ c o s L λ ˙ s i n L ] = [ − v N R M + h − v E R N + h − v E R N + h t a n L ] w=\left[\begin{matrix} -\dot L\\ \dot \lambda cosL\\ \dot \lambda sinL\\ \end{matrix}\right]=\left[\begin{matrix} -\frac{v_N}{RM+h}\\ -\frac{v_E}{RN+h}\\ -\frac{v_E}{RN+h}tanL\\ \end{matrix}\right] w=L˙λ˙cosLλ˙sinL=RM+hvNRN+hvERN+hvEtanL
5.大地坐标系 ( λ , L , h ) (\lambda,L,h) (λ,L,h)与地心直角坐标 ( x , y , z ) (x,y,z) (x,y,z)系互换:
已知 ( λ , L , h ) (\lambda,L,h) (λ,L,h) ( x , y , z ) (x,y,z) (x,y,z)
x = ( R N + h ) c o s L c o s λ x=(R_N+h)cosLcos\lambda x=(RN+h)cosLcosλ y = ( R N + h ) c o s L s i n λ y=(R_N+h)cosLsin\lambda y=(RN+h)cosLsinλ z = ( R N ( 1 − e 2 ) + h ) s i n L z=(R_N(1-e^2)+h)sinL z=(RN(1e2)+h)sinL
已知 ( x , y , z ) (x,y,z) (x,y,z) ( λ , L , h ) (\lambda,L,h) (λ,L,h)
λ = a t a n 2 ( y , x ) \lambda=atan2(y,x) λ=atan2(y,x)
t i + 1 = 1 x 2 + y 2 [ z + R e e 2 t i 1 + ( 1 − e 2 ) t i ] ( 令 t 0 = 0 , 迭 代 5 ~ 6 次 , 获 取 足 够 经 度 a t a n ( t i ) 就 是 纬 度 ) t_{i+1}=\frac{1}{\sqrt{x^2+y^2}}[z+\frac{R_ee^2t_i}{\sqrt{1+(1-e^2)}t_i}](令t_0=0,迭代5~6次,获取足够经度atan(t_i)就是纬度) ti+1=x2+y2 1[z+1+(1e2) tiRee2ti](t0=056,atan(ti))
h = x 2 + y 2 c o s L − R N h=\frac{\sqrt{x^2+y^2}}{cosL}-R_N h=cosLx2+y2 RN

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值