快速傅里叶变换MATLAB代码实现

本文介绍了快速傅里叶变换(FFT)的基本概念,阐述了为何使用FFT进行信号分析,包括频谱分析和系统识别。通过MATLAB代码展示了如何对包含多个频率成分的信号进行变换,并提供了包含高斯白噪声的实际信号处理示例,以及经过FFT后的振幅频谱图。此外,还讨论了数字滤波的应用,如提取特定频率信号。
摘要由CSDN通过智能技术生成

文章目录

1 概述

任何连续测量的时序或信号,都可以表示为不同频率的余弦(或正弦)波信号的无限叠加。FFT(Fast Fourier Transform)是离散傅立叶变换的快速算法,可以将一个信号变换到频域。
对于包含 n n n 个均匀采样点的向量 x x x,其傅里叶变换定义为
y k + 1 = ∑ j = 0 n − 1 ω j k x j + 1 {y_{k + 1}} = \sum\limits_{j = 0}^{n - 1} { {\omega ^{jk}}{x_{j + 1}}} yk+1=j=0n1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tingyuweilou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值