性能度量(模型评价)

  • 分类结果混淆矩阵
    ——预测 预测
    正例 TP FN
    反例 FP TN
    准确率:
    acc = (TP+FP)/(TP+TN+FP+FN)
    查准率或精度Precision:
    P=(TP)/(TP+FP)
    查全率或者灵敏性或者召回率Recall:
    R=(TP)/(TP+FN)
    P-R曲线:横坐标为P,纵坐标为R,平衡点BEP满足P=R的取值
    F1=2PR/(P+R)
    商品推荐中更看重P,抓捕逃犯更看重R(查的更全点)
    F1可以扩展为 Fβ=(1+β2)×P×R/(β2×P+R) F β = ( 1 + β 2 ) × P × R / ( β 2 × P + R )
    β β 大于1更看重查全R,否则更看重查准P
  • ROC和AUC
    用于截断点的设置。
    ROC横坐标为真正例率:TPR=TP/(TP+FN)
    ROC纵坐标为假整理率:FPR=FP/(FP+TN)
    绘图方法:给定m^+个整理和m^-个反例,根据学习器预测结果对样例进行排序,然后把分类与之设为最大,即把所有样例均预测为反例,此时真正例率和假正例率均为0,在坐标(0,0)处标记一个点,然后,将分类阈值依次设为每个样例的预测值,即一次将每个样例划分为正例,设前一个标记点坐标为(x,y),当前若为真正例,则对应标记点的坐标为(x,y+\frac{1}{m^+});当前若为假正例,则对应标记点的坐标为(x+\frac{1}{m^-},y),然后用线段连接相邻点即得。
    AUC可通过对ROC曲线下各部分的面积求和而得。
    AUC的物理意义:AUC就是从所有1样本中随机选取一个样本,从所有0样本中随机选取一个样本,然后根据分类起对两个随机样本进行预测,把1样本预测为1的概率为p1,把0样本预测为1的概率为p0,p1>p0的概率就等于AUC。所以AUC反映的是分类器对样本的排序能力。
    另外值得注意的是,AUC对样本类别是否均衡病不敏感,这也是不均衡样本通常用AUC评价分类器性能的一个原因。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值