上一节快速使用了Tool Call 【AI提升】AI利器Tool Call/Function Call(一) ,使用的是LangChain+Ollama,这一节说说为什么使用这个组合,以及其余的使用场景。
首先大家都知道,在目前AI的世界里,各大模型都还是跟着OpenAI在跑,API也尽量跟OpenAI保持一致。所以这里大致会有三个场景:1、OpenAI,2、其余模型自身的封装-这里选择qwen-agent,3、通用封装框架-这里选择LangChain和Ollama。这一节通过 Tool Call/Function Call 这个概念来比较在上面三种场景中的使用区别。
一、OpenAI
没有购买,纯看代码
1.1 运行代码
import openai
from openai import OpenAI
openai.api_key = "OPENAI_API_KEY"
openai.api_base= "OPENAI_API_URL"
# 第一步,获取大模型
client = OpenAI(api_key=openai.api_key ,base_url=openai.api_base)
# 第二步,定义业务函数
get_current_weather = {
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
},
"required": ["city"],
},
}
}
tools = [get_current_weather]
# 第三步,发起交互
messages = [
{"role": &