汾酒——最好的白酒

  如果一定要我说说哪种白酒最好,我会毫不犹疑地回答:汾酒!有朋友要问:“为什么?”“别急,且容我一一道来。”

一、汾酒度数高
  我和大多数酒鬼一样,喜欢喝度数高的白酒。低度的白酒在于我,一杯下口,仿佛喝了一口兑了水的酒。口腔里面一边是酒,一边是水。高不成,低不就,很不舒服。普通汾酒的度数是53度,已经完全符合我的需要。我喝过的最好的汾酒是朋友从山西带回来老白汾。酱色坛子装,坛子口扣一个同色的瓷杯。没有任何地方标明度数,燃着火柴一碰就着。朋友说山西的朋友告诉他:酒有六十多度,因为某些原因,不方便在商标上标明。
二、汾酒的清香本人最喜欢
  汾酒正是清香型白酒最著名的代表。汾酒没有浓香型酒的轰轰烈烈,没有酱香型酒的怪味,一味清爽与世无争。汾酒入口几乎让你觉察不到他的度数,咽下喉咙也没有明显的烧灼感。绵软温馨,清明爽净。但汾酒的口感却相当饱满,没有酒淡的感觉。
三、汾酒醉人不伤人
  汾酒因为入口不辣,下肚不烧,不易上头。很容易让喝的人忽略酒的度数而频频举杯。嘿嘿,我的汾酒放到不少人。基本症状都是前一分钟还非常正常,忽然疑惑地说“我好象晕了?”然后很快倒下。许多人酒醒后会失去部分记忆(我一直觉得这才是真醉了),但稍有酒量的人都不会感到头疼。
四、汾酒名气极大
  汾酒1915年即拿下巴拿马赛会金奖。此后每次评酒会,汾酒通通是团体冠军队(X大名酒)成员,个人成绩几乎都是亚军。而且汾酒的衍生酒竹叶青从第二届全国评酒会起,也每次入选名酒行列。这是其他酒无法比拟的。汾酒的产地杏花村,也因“借问酒家何处有,牧童遥指杏花村”几乎成了酒家的代言辞。
五、汾酒性价比最高
  冠军酒茅台一瓶售价多少大家清楚,普通53度汾酒售价20-30圆,是人民币呀!只有茅台十分之一。姐妹酒竹叶青也差不多这个价格。比许多二三留选手还要便宜许多。

  如果也用美女来比喻汾酒,我愿意用我心中最纯真最美丽的美女秦罗敷来比喻她。

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值