概率图模型:HMM和CRF

概述

结构化学习(Structured Learning)

概率图模型属于结构化学习的一种,把 F(x,y) F ( x , y ) 换成了概率。

mark

结构化学习中有三个问题:

mark

概率图模型(Graphical Model)

img

隐马尔科夫模型(Hidden Markov Model)

简介

【定义】

  • HMM(Hidden Markov Model)是一个概率模型,用来描述一个系统隐藏状态的转移概率和观测状态(隐藏状态的表现)的发射概率。

  • HMM是关于时序的概率模型,描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,再由各个状态生成观测随机序列的过程.

    • Hidden:说明状态的不可见性,即隐藏状态。

    • Markov:说明状态和状态之间是Markov Chain。

    Markov Chain服从Markov性质——无记忆性:任一时刻的状态只依赖于前一时刻,而不受更往前时刻的状态的影响。

    • 隐藏状态:指一些外界不便于观察(或观察不到)的状态。

    • 观测状态:指可以观察到的,由隐藏状态产生的外在表现特点。

【五个要素】

  • 观测状态
  • 隐藏状态
  • 初始概率
  • 转移概率
  • 发射概率

注:概率都可以用矩阵表示出

mark

img

【三个假设】

  • 齐次马尔可夫假设:又叫一阶马尔可夫假设,即任意时刻的状态只依赖前一时刻的状态,与其他时刻无关。
  • 观测独立性假设:任意时刻的观测只依赖于该时刻的状态,与其他状态无关。
  • 参数不变性假设:五个要素不随时间的变化而改变,即在整个训练过程中一直保持不变。

【三个问题】

  • Scoring(概率计算问题)

    • 问题描述:在已知模型参数和观测序列的条件下,求给定观测序列出现的概率。即得到概率公式。
    • 解决算法
    • 暴力算法:O( TNT T ∗ N T )

      I的遍历个数为 NT N T ,加和符号中有 2T 2 T ,T是观测状态的数目

      mark

    • 前向算法:O( TN2 T ∗ N 2 )

    • 后向算法:O( TN2 T ∗ N 2 )

  • Matching(Decoding):

    • 问题描述:已知模型参数和观测序列,求观测序列对应的最可能的状态序列。即计算概率最大的状态序列。

    • 解决算法

    • 近似算法 贪心思想 局部最优

      此算法思想是在观测O的前提下每个时刻t选择该时刻概率最大的状态。

    • 维特比算法 动态规划

  • Training:Baum-Welch算法

    • 问题描述:已知观测序列,估计模型参数。
    • 解决算法
    • 监督学习算法
    • 非监督学习算法:Baum-Welch算法(EM)算法

mark

【资料】

原理

mark

三个基本问题求解算法

概率计算问题

mark

  • 第一行是隐藏状态序列
  • 第二行是观测状态序列
前向算法

【定义】

给定隐马尔科夫模型 λ λ ,当第t个时刻的状态为i时,前面的时刻分别观测到 y1,y2,...,yt y 1 , y 2 , . . . , y t 的概率称为前向概率。 αt(i)=P(y1,y2,...,yt,qt=i|λ) α t ( i ) = P ( y 1 , y 2 , . . . , y t , q t = i | λ )

【输入输出】

  • 输入:隐马尔科夫模型 λ λ ,观测序列 Y Y
  • 输出:观测序列概率 p ( Y | λ )

【步骤】

  1. 初值

    α1(i)=πibiy1i=1,2,...,N α 1 ( i ) = π i b i y 1 i = 1 , 2 , . . . , N

    其中, π π 是初始状态概率向量, biy1 b i y 1 是观测概率矩阵(即发射概率矩阵) B B 的对应第i个隐藏状态观测到观测状态 y 1 的概率。

  2. 递推

    t=1,2,...,T1αt+1(i)=(j=1Nαt(j)aji)biyt+1 对 于 t = 1 , 2 , . . . , T − 1 α t + 1 ( i ) = ( ∑ j = 1 N α t ( j ) a j i ) b i y t + 1

    注:t+1时刻的前向概率 αt+1(i) α t + 1 ( i ) 的求法是:所有t时刻的隐藏状态转移到t+1时刻的隐藏状态的概率之和与t时刻的发射概率的乘积。

    解:

    • t时刻的状态为j的前向概率是 αt(j) α t ( j ) ,现在时刻t状态为j的概率已知,乘上状态j转移到状态i的转移概率就是t+1时刻的状态为i的概率,即 αt(j)aji α t ( j ) a j i
    • 由状态到观测,乘上状态i得到观测 yt+1 y t + 1 的概率 biyt+1 b i y t + 1
  3. 最终

    P(Y|λ)=i=1NαT(i) P ( Y | λ ) = ∑ i = 1 N α T ( i )

    注:

    • 如果令前向概率中的t=T,即 αi(T)=P(y1,y
  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值