USACO-Section3.2 Sweet Butter【Dijkstra算法】

题目描述:

农夫John发现做出全威斯康辛州最甜的黄油的方法:糖。把糖放在一片牧场上,他知道N(1<=N<=500)只奶牛会过来舔它,这样就能做出能卖好价钱的超甜黄油。当然,他将付出额外的费用在奶牛上。
农夫John很狡猾。像以前的巴甫洛夫,他知道他可以训练这些奶牛,让它们在听到铃声时去一个特定的牧场。他打算将糖放在那里然后下午发出铃声,以至他可以在晚上挤奶。
农夫John知道每只奶牛都在各自喜欢的牧场(一个牧场不一定只有一头牛)。给出各头牛在的牧场和牧场间的路线,找出使所有牛到达的路程和最短的牧场(他将把糖放在那)。

INPUT FORMAT:

第一行: 三个数:奶牛数N,牧场数P(2<=P<=800),牧场间道路数C(1<=C<=1450).
第二行到第N+1行: 1到N头奶牛所在的牧场号.
第N+2行到第N+C+1行: 每行有三个数:相连的牧场A、B,两牧场间距(1<=D<=255),当然,连接是双向的.

OUTPUT FORMAT:

一行 输出奶牛必须行走的最小的距离和.


SAMPLE INPUT

3 4 5
2
3
4
1 2 1
1 3 5
2 3 7
2 4 3
3 4 5

样例图形
         P2  
P1 @--1--@ C1
    \    |\
     \   | \
      5  7  3
       \ |   \
        \|    \ C3
      C2 @--5--@
         P3    P4

SAMPLE OUTPUT

8


解题思路:

这道题是一道单源最短路问题,唯一的难点就是方法的选择及实现方式。Bellman-Ford算法的复杂度为O(N*V*C),而Floyd算法的复杂度为O(V*V*V),都不行。朴素的dijkstra算法复杂度为O(N*V*V),也超过了,但是如果用优先队列实现的dijkstra算法可以将复杂度降到O(N*C*logV),得解。

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<vector>
#include<queue>
#include<algorithm>
#define INF 99999999
using namespace std;
struct edge { int to,cost; };
typedef pair<int,int>P;

int N,V,C;
vector<edge> G[810];
int d[810],ans[510];
int answer=INF;

int dijkstra(int s){
    int temp=0;
    priority_queue<P,vector<P>, greater<P> >que;
    fill(d,d+V+1,INF);
    d[s]=0;
    que.push(P(0,s));

    while(!que.empty()){
        P p=que.top();que.pop();
        int v=p.second;
        if(d[v]<p.first)continue;
        for(int i=0;i<G[v].size();i++){
            edge e=G[v][i];
            if(d[e.to]>d[v]+e.cost){
                d[e.to]=d[v]+e.cost;
                que.push(P(d[e.to],e.to));
            }
        }
    }
    for(int i=0;i<N;i++){
        if(d[ans[i]]!=EOF)
        temp+=d[ans[i]];
        else {
            temp=INF;break;
        }
    }
    return temp;
}
int main(){
    FILE *fin  = fopen ("butter.in", "r");
    FILE *fout = fopen ("butter.out", "w");
    fscanf(fin,"%d%d%d",&N,&V,&C);
    for(int i=0;i<N;i++)
    fscanf(fin,"%d",&ans[i]);
    int a,b,c;
    for(int i=0;i<C;i++){
        fscanf(fin,"%d%d%d",&a,&b,&c);
        edge p;
        p.to=b,p.cost=c;
        G[a].push_back(p);
        p.to=a,p.cost=c;
        G[b].push_back(p);
    }
    for(int i=1;i<=V;i++){
        answer=min(answer,dijkstra(i));
    }
    fprintf(fout,"%d\n",answer);
    exit(0);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值