所有人都在讨论的“DeepSeek”,究竟是什么?为什么刚发布就如此火爆?


当地时间2025年1月27日

受中国人工智能初创公司 —— 深度求索公司(DeepSeek)冲击

美国人工智能主题股票遭抛售美国芯片巨头英伟达(NVIDIA)股价历史性暴跌纳斯达克综合指数大幅下跌

截至当天收盘,英伟达公司股价下跌16.97%,市值一日内蒸发近6000亿美元,创美国历史上任何一家公司的单日最大市值损失

DeepSeek冲击美股

英伟达的暴跌对整个市场造成了冲击,博通公司股价下跌17%,超威半导体公司(AMD)股价下跌6%,微软股价下跌2%。此外,人工智能领域的衍生品,如电力供应商也受到重创。美国联合能源公司股价下跌21%,Vistra的股价下跌29%。


 

市场分析认为,此次美国股市震荡的核心原因是DeepSeek的最新突破,动摇了美国科技行业的地位。2024年底,DeepSeek发布了新一代大语言模型V3,并宣布开源。

测试结果显示,该模型在多项评测中表现优于主流开源模型,且具有成本优势。


 

1月,DeepSeek在世界经济论坛2025年年会开幕当天发布了最新开源模型R1,再次引发全球关注。

据介绍,R1模型在技术上实现了重要突破——用纯深度学习方法让AI自发涌现出推理能力,在数学、代码、自然语言推理等任务上,性能比肩OpenAI的o1模型正式版,且训练成本仅为560万美元,远低于美国科技巨头的数亿美元乃至数十亿美元投入。


 


 

市场分析师认为,DeepSeek的模型推出如同一颗“震撼弹”,令市场对美国科技行业的竞争力产生疑虑,导致人工智能主题股票遭抛售。
 

安内克斯理财公司首席经济学家雅各布森表示,人们真正感到诧异的是,像英伟达这样的公司,被认为几乎垄断了人工智能生态系统中的所有芯片,但也许“护城河”并不像人们想象的那么强大,这可能是其股价下跌的原因。

目前,DeepSeek开发的移动应用程序已超越OpenAI的ChatGPT,登顶苹果手机应用商店美国区免费应用榜单。
 

那么,“DeepSeek”到底是什么呢?
 

DeepSeek是一款由国内人工智能公司研发的大型语言模型,拥有强大的自然语言处理能力,能够理解并回答问题,还能辅助写代码、整理资料和解决复杂的数学问题。

与OpenAI开发的ChatGPT相比,DeepSeek不仅率先实现了媲美OpenAI-o1模型的效果,还大幅降低了推理模型的成本。其新模型DeepSeek-R1以十分之一的成本达到了GPT-o1级别的表现,引发海外AI圈的广泛讨论。
 

北京邮电大学人工智能学院人机交互与认知工程实验室主任刘伟介绍,DeepSeek最大的优势在于算法的改进和优化,节省了算力和数据量。以前如果说OpenAI是“大力出奇迹”,如今DeepSeek则是“小力也可以出奇迹”——小的算力用新的方法也能创造奇迹。


 


 

南京大学人工智能学院教授俞扬表示,DeepSeek在算法上进行了相应的优化,使得训练成本大幅降低。


开源:未来的发展方向?

DeepSeek采用了完全开源策略,不仅降低了用户的使用门槛,还促进了AI开发者社区的协作生态。通过开源,DeepSeek吸引了大量开发者和研究人员的关注,推动了AI技术的发展。英伟达AI科学家Jim Fan称赞DeepSeek是“真正开放的前沿研究,赋能所有人”。

当然,开源也面临着保护知识产权和开源社区秩序维护等挑战。
 

俞扬表示,开源只是一种商业模式,即便开源项目也拥有版权。开源与闭源之争,实质上是不同商业模式在特定场景和时代背景下的有效性对比。

DeepSeek的成功被一些人视为中国技术理想主义的体现,甚至被外国人比喻为神秘的东方力量。
 

但从整个AI大模型产业来看,DeepSeek的成功或许代表了一种全新的发展方向——通过算法优化而非单纯依赖算力和数据量来提升模型性能。这一方向也为AI大模型产业的发展提供了新的思路。

接下来,从公开的靠谱的资料,梳理出关于DeepSeek和梁文锋的10个关键知识,做个科普,顺带标注重点及见解引伸解读。

分为两部分:

第一部分:DeepSeek梁文锋被热议的三大背景

第二部分:DeepSeek与我们有关的7个认知

希望这一篇的梳理,能给你带来一些新视角,这样在2025年起更猛烈的AI变革浪潮时,心理更有底一些。

DeepSeek被热议的大背景

没有观念的冲突,没有信息差和认知差的冲突,就不会有春节档被热议。DeepSeek的热议有三大冲突背景。

大背景1

全球国家AI人工智能谁领先的认知冲突

事实上,中国在AI领域是全球领先的,只不过与老美尚有差距。我们和老美,是全球唯二的领先的国家。无论是资本,人才,AI创业公司的质量,综合实力,都是如此。只不过,国民有相当一部分人不愿意承认,加上大家心知肚明现在已领先的科技大佬们大多都是抄作业的顶尖高手。

你看国内互联网行业和科技行业有多少是原创的?乱拳打死师傅的现象时有发生,你就看谷歌离开了,国内的搜索有什么进步?

在国内的社交媒体,一直以来,看空中国科技实力,唱空中国科技公司,是特别有市场,只要说中国体制、政策、文化、土壤、人种不行,特别容易拿到大流量,找到套利空间的。没有认知的普通网民被误导利用当枪使还不自知。
 

当DeepSeek出来后,很难短时间扭转这种认知惯性。在外网高认知的群体热议,外溢到国内带动,这种惯性观点碰撞,就热起来了。

如果不是DeepSeek真的足够惊艳到外网,加上平时能用ChatGPT的人也是少数,国人这股惯性是不会承认它的优秀的。因此,实质上,是外网的外人,先看到了事实,是外人先帮助了国人看到DeepSeek的优秀。

大背景2

在DeepSeek出来前,在AI行业上有三条道路选择,大多数科技大佬,资本,创业公司选了最容易的那一条:做应用层创新。

在2024年4月26日,工程院院士孙凝晖给高层讲课,当时还上了CCTV。


 

当时的讲课文稿全稿,网上找得到。在发展上有四大困境,从技术体系有三条道路选择。

困境一,为美国在AI核心能力上长期处于领先地位,中国处于跟踪模式。

困境二,为高端算力产品禁售,高端芯片工艺长期被卡。

困境三,为国内智能计算生态孱弱,AI开发框架渗透率不足。

困境四,为AI应用于行业时成本、门槛居高不下。


 

三个选择:

选择一:统一技术体系走闭源封闭,还是开源开放的道路?

一是追赶兼容美国主导的A体系。

我国大多数互联网企业走的是GPGPU/CUDA兼容道路,很多芯片领域的创业企业在生态构建上也是尽量与CUDA兼容,这条道路较为现实。由于在算力方面美国对我国工艺和芯片带宽的限制,在算法方面国内生态林立很难形成统一,生态成熟度严重受限,在数据方面中文高质量数据匮乏,这些因素会使得追赶者与领先者的差距很难缩小,一些时候还会进一步拉大。
 

二是构建专用封闭的B体系。

在军事、气象、司法等专用领域构建企业封闭生态,基于国产成熟工艺生产芯片,相对于底座大模型更加关注特定领域垂直类大模型,训练大模型更多采用领域专有高质量数据等。这条道路易于形成完整可控的技术体系与生态,我国一些大型骨干企业走的是这条道路,它的缺点是封闭,无法凝聚国内大多数力量,也很难实现全球化。

三是全球共建开源开放的C体系。

用开源打破生态垄断,降低企业拥有核心技术的门槛,让每个企业都能低成本地做自己的芯片,形成智能芯片的汪洋大海,满足无处不在的智能需求。用开放形成统一的技术体系,我国企业与全球化力量联合起来共建基于国际标准的统一智能计算软件栈。形成企业竞争前共享机制,共享高质量数据库,共享开源通用底座大模型。对于全球开源生态,我国企业在互联网时代收益良多,我国更多的是使用者,是参与者,在智能时代我国企业在RISC-V+AI开源技术体系上应更多地成为主力贡献者,成为全球化开放共享的主导力量。

选择二:拼算法模型,还是拼新型基础设施?

首先,数据已成为国家战略信息资源。数据具有资源要素与价值加工两重属性,数据的资源要素属性包括生产、获取、传输、汇聚、流通、交易、权属、资产、安全等各个环节,我国应继续加大力度建设国家数据枢纽与数据流通基础设施。

其次,AI大模型就是数据空间的一类算法基础设施。以通用大模型为基座,构建大模型研发与应用的基础设施,支撑广大企业研发领域专用大模型,服务于机器人、无人驾驶、可穿戴设备、智能家居、智能安防等行业,覆盖长尾应用。

最后,全国一体化算力网建设在推动算力基础设施化方面发挥了先导作用。算力基础设施化的中国方案需具备“两低一高” :

供给侧,大幅降低算力器件、设备、网络连接等总成本,让中小企业用得起高品质算力服务;

消费侧,大幅降低用户使用门槛,使公共服务易获取、易使用;

服务效率侧,实现低熵高通量,保障高并发时系统通量不急剧下降,确保“算得多”,为最广人群提供智能服务。

选择三:AI+着重赋能虚拟经济,还是发力实体经济?

“AI+”成效是检验人工智能价值的关键。

次贷危机后,美国制造业占比下滑,更侧重回报率高的虚拟经济,轻视实体经济。美国AI主要用于虚拟经济与IT基础工具,“脱实向虚”,如硅谷炒作VR、元宇宙等。

中国注重实体经济与虚拟经济同步发展,实体经济优势显著,制造业产业门类全、体系完整,场景和私有数据多。我国应挑选重点行业加大投入,如装备制造、医药业,形成可推广范式。AI赋能实体经济的难点是算法与物理机理融合,成功关键在于大幅降低成本、扩大产业规模。我国要探索出契合自身的人工智能赋能实体经济高质量发展之路。好,现在,当你了解了这一个大的国家级的困境和三大选择,对AI的认知,就已经拔高了足够高的高度。

知道老美炒作的AI是什么AI,国内要的AI是什么样的AI,未来去向何方,如何走向。

那么,当你明白了这一个大背景后,回到DeepSeek,梁文锋牛的是什么?

1,是把价格打下来了

2,坚持开源道路让整个AI智能上下游蓬勃发展起来

3,走出了一条不依赖堆算力(英伟达显卡),不依靠庞大的数据,训练成本大幅下降。就与世界最牛AI,ChatGPT o1实力相当。

4,坚持创新,正在积极找出一条世界上都没走通道路。

5,使用的团队成员没有一个是留洋海归,并严禁团队成员出国。

6,支撑DeepSeek创新所用的资金全不依靠融风投的钱,因为风投大多是国外资本,也不靠像百度文心一言等,一众国内外AI向用户收钱变现眼睛就盯着钱,梁文锋都靠自己研发的AI,在全球股市,凭本事赚钱支持创新。

就凭这6条,国内目前就还没哪一个AI创业者做到与国之所需契合。

AI时代已到来,确定无疑,所有的行业,工作职位,都得用AI重新造一遍,未来是AI智能时代,对AI智能基础设施的需求,跟水电网没任何区别。像DeepSeek这样的AI恨之太少了,实属难得。所以新闻联播冠以“国运级科技成果”评价,一点不为过。

大背景3

年轻一代的年轻创业者的灵魂是自由的,科技大佬们已老
 

曾经有人问对比过中国科技领域的创业者和老美的创业者,发现中国的创业者大多是现实主义者,满身铜臭味,把创业项目,公司比作印钞机。百度李彦宏就公开回答过记者,说自己是现实主义者,就是要赚钱。

发现老美的创业者,大多都是理想主义者,长期主义者,浑身充满改变世界,极力探索科技的边界。马斯克最具代表。

因为国人长期接收到的信息,都是已功成名就的大佬的故事,连国人都不相信,居然梁文锋的区区100人的团队,没有国际大背景,还干出了传统BAT,TMD们庞大资金,庞大人才没干出来的事,居然还彻底开源,还免费!

当梁文锋说,DeepSeek的护城河是将Know-How(专有技术),沉淀在团队成员身上,招人只看好奇心和热爱,招来的人都不看重钱,都好奇技术边界可以做到哪。
 

所以,这样的年轻人,不迷信,不跪硅谷,敢斗争,做出来了DeepSeek AI,以中国人自己的思维模式和逻辑架构进行创新,通过工程创新和模型架构创新,在高性能芯片等基础技术不如美国的情况下,达到与美国同等高度,成本仅为美国的5%,速度还更快。

在这样的大背景下,Old Money们和News Money们,形成了鲜明的对比,曾经的科技大佬们,Old Money们的所谓创新,都是一心想要用所谓的互联网思维,收割实体,把实体企业主圈进平台竞争搞流量,形成蚌鹤相争平台得利的事,有些还不忘惦记着小摊小贩口袋里几个钢镚。那些富可帝国的大佬还搞起小圈子。

而梁文锋们(News Money)立志AGI,持续探索别人没有走过的路,低调神秘,以至于网络上只能找到两张照片。
 

Old Money和News Money们这种巨大的反差,引发好奇,怀疑,猜测,是引发热议的原因之一。
 

DeepSeek与我们有关的7个认知

DeepSeek像一条鲶鱼,跳入了我们的生活,工作,利益链里,跟我们有关,所以才要对它的出现,带给我们的影响,适应AI时代的进化带来积极的思考。

1,观念层:DeepSeek的创新是从0-1的创新,DeepSeek V3大模型是一个从底层硬件到上层算法的复杂大系统。所以,当观众,当用户也要自信点,DeepSeek,有足够惊艳的创新,它就敢自信地,以透明和开放的方式分享给全世界。中国的科技创业者,也能站在前沿,搞出科技成果。

2,行业技术层:DeepSeek探索成功的方向,将会带动国内外其他AI创业者,就像当初ChatGPT成功使用Transformer架构应用在AI上,并找到聊天的应用场景,对世界的影响那样。

DeepSeek技术架构创新体现在:

2.1)混合专家模型(MoE)与自研的MLA架构,大大降低对显卡算力的要求,只需用open AI们5%的训练成本,就做出同等优秀的模型。

2.2)多令牌预测(MPT)模式创新,给用户生成输出结果的推理速度,提升3倍以上,一个字,就是快!像闪电。

当然,你会说现在很多人用DeepSeek总是服务器忙,甚至用不了,那是因为流量太大,加上外网攻击,服务器超负荷的原因。

2.3)强化学习与反思机制的创新,让你不再像以前那些非DeepSeek那些AI那样事无巨细地交代写提示词,像跟一个刚入行的菜鸟对话,说得很多了,活还没干好,气得不行。

DeepSeek就不需要下功夫写提示词,你就告诉它,你是谁,你要达到什么目标或有什么问题,要避免发生什么问题的担忧,就行了。

它就会自己去做,给你输出结果,还会像个小机灵鬼似的,告诉你它是怎样一步一步思考的,也让你学习理解他的工作方式,自己的问题问得对不对,是不是你误导了它,也帮助你改正反思,避免垃圾的提问,得到垃圾的结果。让你自己在问之前,想清楚自己要的是什么。

以上这些技术创新,都将为模型小型化,低硬件要求,低成本,高质量提供信心。
 

更关键的是,DeepSeek完全开源给你免费用,给你二次开发应用到你自己的工作流程里,为你公司服务,为你自己的业务服务,提升你的AI应用水平。
 

这些都是在DeepSeek之前国产AI,你能安全满血用到的AI,所没有的待遇。
 

你能不能用得好这些基础设施,就看你自己的了,总之2025年起,不接入智能,不使用AI,后浪真的会把你拍死在沙滩上。特别是想要创业赚钱的。

3,组织创新:这对创业的人,非常有关。

组织方式决定组织的能量大小,用组织笨蛋的方式不会得到天才的结果。

要知道现在让老美也忌惮的,是DeepSeek梁文锋,居然不需要留洋顶尖大咖,只组织本土才读博的学生,就干出这样的成绩。这是最厉害的组织尖端人才的方式,一旦这种组织方式能指导国内的科技企业,那就会诞生N个DeepSeek,那就厉害了!

怪不得让Open AI,马斯克,硅谷,华盛顿们感动紧张。

要知道,我们国内的企业组织管理理论,都是先抄日本的作业,后抄老美的作业的,字节跳动(抖音母公司)的张一鸣就是《奈飞的文化手册》OKR在本土最佳实践,你看看有多厉害就知道了。而DeepSeek的组织形式,现在我了解到的,是叫类似【军团式的协同平推创新】的组织形式。

组织形式,是创新最重要的保障。
 

大家想想,为什么国内太多的公司没有创新?

就是因为用组织牛马的形式嘛,那肯定得不到硅谷般的创新。

所以,即使你不创业,看懂了公司的组织形式,你也懂得 “良禽择木而栖,贤臣择主而事” ,实现自己的职业价值,人生价值。硅谷教父彼得・蒂尔(Peter Thiel),对这种军团式协同创新有过一个深刻的表述:

他认为一个真正的垄断式创新,需要构建复杂集群的(Complex), Vertically Integrated System(垂直整合系统),许多不同层面的创新必须同时发生,并以一种高度协同的方式组合在一起。

他认为伊隆・马斯克(Elon Musk)成功的根本,就来自于对这种协同复杂系统的追求。而 伊隆・马斯克(Elon Musk),也被认为某些方面是最接近中国企业的(指军团式创新)。

现在,还没有管理学著作对这一创新结构作出整体解释,我努力按我的理解,讲两点这种组织形式的先进性:

第一点:AI大模型的迭代

2023年6月,DeepSeek 成立

2024年2月,发表 DeepSeek-Math模型。

模型的迭代节奏,从 DeepSeek-Math 的第一次推出,到最后走到 R1,不到12个月。

第二点:在这个成立很短的时间,从基础设施搭建,到底层硬件优化,到模型算法创新,一整个自己重做了一套。

大家忽略技术语和专业名词,知道在这些地方同步创新就可以了:

基础架构升级

团队自主研发了"萤火"分布式训练框架,通过创新设计的DualPipe算法让多层模型并行训练时减少等待时间,同时优化跨服务器数据传输效率,使2048块GPU能高效协同工作。针对传统注意力机制存储开销过大的问题,采用低秩压缩技术(MLA机制)将内存占用降低93.3%。

专家系统革新

突破传统MoE架构限制,设计了深度细分的专家网络(DeepSeekMoE)。每个专家分工更精细且支持知识共享,通过智能路由算法自动分配任务,既保证专家训练充分又避免"忙闲不均",使6710亿参数的巨型模型在推理时仅激活3.7%参数。

硬件级优化

针对GPU集群特性,创新性地结合NVLink(高速内联)和InfiniBand(跨节点互联)优势。通过精密数学建模确保每个数据包传输路径最优,当进行专家网络通信时,将跨节点传输次数限制为4次,使带宽利用率提升3倍。甚至直接编写GPU底层指令(PTX)绕过常规限制,精确控制计算单元。

训练加速方案

开发智能的FP8混合精度系统,对80%的非关键计算使用压缩精度,关键部分保留高精度,既提速又省内存。引入"多token预测"技术让模型能同时预测后续多个词汇,使每次计算产出更高效。

推理能力迁移

采用"知识蒸馏"双阶段方案:先用强化学习让大模型自主提升推理能力(省去额外价值模型训练),再将这种能力提炼注入到小模型,使轻量模型也能具备复杂推理能力

.........

还有很多,每一个大的进化,里有都有很多技术要点的创新迭代。
 

关键是这些工作,都是自下而上的发生的,团队每一个人都是自组织,某一个问题的发现,立马就能自组织去解决。这就是这种【军团式的协同平推创新】的组织形式的冰山一角。

我们都知道,在咖啡连锁业,瑞幸咖啡的组织形式是最牛X的,在APP上最厉害的机制是腾讯和字节的赛马机制。
 

现在,AI时代,最厉害的创新组织形式,就是DeepSeek了。

只要管理学家们,多研究一下,或DeepSeek学奈飞出类似于《奈飞文化手册》在硅谷人手一本的一本书,在管理学术上提炼一下,那就对企业界走向智能时代作最大的贡献了。

很多公司没创新,就是没有组织能力组织高密度的人才高效协作。

4,人才观:DeepSeek的人才观,是好奇心和热爱。

这个真的跟我们息息相关。

大家想想,为什么很多人在一个行业干了十多年,仍然成为不了一个专家?一到35岁被优化了就没法独立,只能去送外卖?
 

就是因为好奇心和热爱早已磨灭。

再想想,当AI越来越能干,肯定能替代很多我们身上工具属性的工作,解决你的人身身由,让你的灵魂更自由了,这时,可以追求自己的好奇心和热爱,凭好奇心和热爱吃饭了,那么,我们到那时,还有吗?
 

我们再想想,如果现在自己家里有孩子,培养孩子要注重什么才是不输在起跑线?当然就是要保护他们的好奇心和培养他们的热爱嘛!对吧?

因为AI时代,工具属性的东西由AI替代的,人性身上的创造力,想象力,对人性的理解,对人的需求的洞察力和探索,是最重要的。这是智能时代的要求。

AGI即通用人工智能,在我们有生之年会到来的。到时的AGI能理解、学习和应用知识,进行推理、解决问题、做出决策、进行自然语言交流、感知和理解世界等,类似一个常人,并且可以在多个领域和任务中灵活地适应和表现出色,而不仅仅局限于特定的单一任务。

在这个时候,碳基生命和硅基AI是协同的关系,能适应这种关系的人,适者生存,能创造这种关系的人,成为社会顶流高层。

5,DeepSeek的应用落地:应用上,真的以后不能学习写提示词了。只管想清楚自己的需求,积累自己的私有知识库和数据库,做出独特性。
 

无论是梁文锋,还是字节跳动的张一鸣,都是终极目标AGI,都在加码研究探索推理能力的边界、探索感知能力的边界、探索软硬一体的下一代模型设计、探索下一代AI学习范式、探索下一个scaling(缩小,小型化)方向。

曾经,我们给每一个电子产品放入一个芯片,写上几行代码,那些产品就会按运行代码,像傻瓜或半傻瓜式地实现预设的功能。

在AI智能时代,在这些基础上,再接上AI智能基座,这些电子产品,就替代人的工具功能。

在商业化路径上,DeepSeek坚持基础研究优先,暂不涉足应用层;通过开源共享降低技术垄断,支持中小开发者低成本使用大模型。盈利模式上,与互联网大厂差异化,不捆绑生态。

这样,只要是一切都不觉得理所当然的人,突破传统的人,才能用好DeepSeek。
 

在教育上,不要觉得50个人一个班是理所当然的,这样的老师和学校,能用好AI创新,用到教育上。因为50人学生一个班是教育落后的表现。

在人生理解上,不要觉得上学,工作,退休三段式人生是理所当然,能保有好奇心,能用好AI。
 

在工作上,不要觉得工作一周5天每天8小时是理所当然,996是福报,总是怕AI替代的人,能拥抱好AI,给自己创造价值,将工具属性的活交给AI。

在人与人的关系上,不要觉得AI到来了,人与人的关系更疏远而担忧,觉得人跟人之间有往来才是有人情,是理所当然,这样的人能用好AI,因为人的群居本质都是个体太弱了,有AI及AI硬件加持的人类,会弱化群体需求。
 

在赚钱这件事上,不要觉得你所有的东西都要用钱来买是理所当然,这样的人,能用好AI,因为货币的发明,金融体系的发明,经济周期的痛苦,都是人类智慧的缺乏的表现,AI会帮助人类进化。

6,如果,你很担心AI会控制人类,我劝你先担心2025怎样进化自己,用好像DeepSeek这样好AI,那些塔尖上的人都不怕,就咱普通人这点基因水平,有啥好怕的?

本文内容来源于网络,行业观点、内容仅供参考学习,请勿用于商业用途。如发现内容侵权事宜请联系删除

嘿~我是卢卡上学,为啥起了这么一个名字呢?推荐看一下《夏日有晴天》这部影片,很不错哦。我是一个对AIGC,AI绘画,人工智能有强烈兴趣,从业多年的IT攻城师!如果对我的文章内容感兴趣,请帮忙关注点赞收藏,谢谢啦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卢卡上学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值