R数据分析:什么是人群归因分数Population Attributable Fraction

本文详细介绍了人群归因分数(PAF)的概念,它是衡量暴露因素在人群中导致特定疾病比例的流行病学指标。通过实例解析了PAF的计算方法,包括前瞻性研究中的公式,并探讨了与风险比(RR)和比值比(OR)的关系。此外,还提到了在实际研究中如何使用R进行PAF的计算。文章最后鼓励读者通过计算实例加深理解,并提供数据集和学习资料下载。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天在论文中看到个这么一个术语Population Attributable Fraction,中文叫人群归因分数,意思是暴露如果被取消,某个结局减少的比例,比如我知道了孤独感对抑郁有影响,计算PAF可以得出,如果孤独感被干预,抑郁人群比例会下降多少:

PAF; the proportionof cases of depression that could be prevented if the influence of loneliness was removed

这么一个指标在经济评价的文章也有见过,就是我预防了人群某个风险因素之后我能为国家省多少医疗支出。

写研究意义的用得上哦。

今天就给大家介绍一下这个指标:

人群归因分数初识

这个指标也叫做人群归因比Population Attributable Proportion或者归因比Attributable Proportion Among the Total Population

(Also called the Population Attributable Proportion or Attributable Proportion Among the Total Population)

PAF是一个评估暴露的人群作用的非常常见的流行病学指标,表达的意思是如果某个暴露取消,结局会减少的百分比。

PAF is the estimated fraction of all cases that would not have occurred if there had been no exposure

这个指标基本的原理就是用可以归因为暴露的病例数,除以总的病例数(O)。

可以归因为暴露的病例数则计算为总病例数(O)减去不能归因暴露的病例数(E)

所以总的PAF的理论表达就是(O − E)/O

where O and E refer to the observed number of cases and the expected number of cases under no exposure, respectively

对于一个前瞻性队列研究,我们先看下面的表格,把上面的思路走一遍:

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

公众号Codewar原创作者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值