【学习笔记】人群归因分数 PAF 以及combined PAF

人群归因风险比例(Population Attributable Fraction,PAF)是一个流行病学指标,它估计了在总体中,如果能消除一个特定的危险因素,能预防多少百分比的疾病或健康结果。简单来说,PAF回答的是:“如果没有这个风险因素,总体中会有多少病例是可以避免的?”

单个危险因素的PAF

对于单个危险因素,PAF可以通过以下公式计算:

其中:

  • Pe​ 是该危险因素在总体中的暴露比例。
  • RR 是相对风险(Relative Risk),表示暴露组与未暴露组的疾病发生比。

合并的PAF(Combined PAF)

当研究多个危险因素对健康结果的影响时,单个的PAF可能不足以全面反映风险因素的联合效应。此时,我们需要计算合并的PAF。

合并的PAF假设各个风险因素之间是独立的,它通过以下公式计算:

其中:

  • PAFi​ 是第i个风险因素的PAF。
  • n 是危险因素的总数。

如果只有两个危险因素,公式简化为:

Combined PAF=1−(1−PAF1)×(1−PAF2)Combined PAF=1−(1−PAF1​)×(1−PAF2​)

注意事项

  • 如果风险因素之间存在交互作用,即一个因素的存在可能影响另一个因素的效应,上述公式可能不适用,需要更复杂的统计模型来估计合并的PAF。
  • 合并的PAF提供了一个假设消除所有研究中的风险因素后,总体中可以预防的疾病比例的估计。
  • 在实际应用中,计算PAF需要可靠的暴露和疾病发生率数据,以及风险因素与疾病之间准确的相对风险估计。

一种常见的PAF置信区间计算方法

实际应用

合并的PAF非常有用,特别是在公共卫生规划和政策制定中,它帮助决策者了解通过针对多个风险因素的干预措施,可能会对疾病负担产生多大的影响。然而,实际操作时,我们必须考虑到多个风险因素可能不是完全独立的,并且它们之间可能存在复杂的交互作用。因此,在估计合并的PAF时,应当小心谨慎,并在可能的情况下考虑更先进的统计方法来估计风险因素的联合效应。

参考文献

  • Rockhill B, Newman B, Weinberg C. Use and misuse of population attributable fractions. American Journal of Public Health. 1998;88(1):15-19.
  • Levin ML. The occurrence of lung cancer in man. Acta Unio Internationalis Contra Cancrum. 1953;9(3):531-541.
Cox回归是一种用于研究生存分析中的关联性的统计模型,它考虑了变量之间的协变量影响以及时间依赖的风险。人群归因分数PAF,Population Attributable Fraction)是一个指标,用来衡量暴露因素对人群疾病发生率的影响程度。PAF表示如果群体中所有人都消除这个暴露,会发生多少比例的新病例。 计算PAF通常涉及以下几个步骤: 1. 对于每个观察到的结果(如死亡事件),确定暴露组的HR(风险比)。 2. 使用该HR和对照组的发病率,通过累积发病率函数估计PAF。 3. 可能需要将结果标准化,例如按年龄、性别等分层。 在R语言中,可以使用`survminer`包中的`riskratio()`函数获取风险比,然后结合`epi`或`appliedepidemiology`这样的库进行PAF的计算。以下是一个简单的示例: ```R library(survminer) library(epi) # 假设我们有数据df包含'time', 'status'(生存状态),'exposure'(暴露变量) data <- df %>% # 计算cox回归模型并提取风险比 survfit(Surv(time, status) ~ exposure) %>% summary() # 获取风险比 HR hr <- data$exp # 假设对照组发病率为prev_rate prev_rate <- ... # 从其他地方获取或假设值 # 根据HR计算PAF # 如果HR > 1 (暴露增加风险),则PAF = (HR - 1) / (HR + (prev_rate * (1 - HR))) # 如果HR < 1 (暴露降低风险),则PAF = prev_rate * (HR - 1) / (HR + (prev_rate * (1 - HR))) # 使用epi包计算PAF paf <- risk_ratio(hr, prev_rate, method="proportional", conf.int=TRUE) # 输出PAF及其置信区间 print(paf) ``` 请注意,实际应用中需要根据数据和具体研究设计调整上述代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值