R数据分析:扫盲贴,什么是多重插补

好多同学跑来问,用spss的时候使用多重插补的数据集,怎么选怎么用?是不是简单的选一个做分析?今天写写这个问题。

什么时候用多重插补

首先回顾下三种缺失机制或者叫缺失类型:

上面的内容之前写过,这儿就不给大家翻译了,完全随机缺失,缺失量较小的情况下你直接扔掉或者任你怎么插补都可以,影响不大的。随机缺失可以用多重插补很好地处理;非随机缺失,任何方法都没得救的,主分析做完之后自觉做敏感性分析才是正道;这个我好像在之前的文章中给大家解释过原因。

When it is plausible that data are missing at random, but not completely at random, analyses based on complete cases may be biased. Such biases can be overcome using methods such as multiple imputation that allow individuals with incomplete data to be included in analysesly, it is not possible to distinguish between missing at random and missing not at random using observed data. Therefore, biases caused by data that are missing not at random can be addressed only by sensitivity analyses examining the effect of different assumptions about the missing data mechanism

### 多重的概念与实现方法 多重是一种用于处理数据集中缺失值的有效技术。其核心思想是通过对缺失值进行多次合理估计,生成多个完整的数据集,并对这些数据集分别进行分析,最后将结果综合起来得出结论[^1]。 #### 1. **多重的核心流程** 多重通常遵循以下几个主要阶段: - **数据准备** 首先需要整理原始数据集并识别其中缺失值的位置及其分布模式(随机缺失、完全随机缺失或非随机缺失)。这一步对于后续策略的选择至关重要[^3]。 - **初始** 对缺失值进行初步填,常用的方法包括均值替换、中位数替换或众数替换等简单方式。这一过程为更复杂的迭代提供了一个起点。 - **迭代** 使用多变量链式方程(MICE, Multivariate Imputation by Chained Equations)或其他统计建模方法完成迭代。具体而言,在每一轮迭代过程中会不断调整和优化先前的值直到达到收敛状态为止。 - **生成完整数据集** 经过多轮迭代之后会产生若干个含有不同版本值得到的新数据集合。每一个这样的新数据集都可以视为原不完整资料的一个可能真实情况再现[^2]。 - **单独分析各数据集** 接下来针对上述所创建出来的每一组已完成形式的数据执行各自独立的标准统计检验操作。 - **汇总分析成果** 将来自于前面步骤里得到的所有单一样本测试报告加以整合形成最终整体判断依据。 #### 2. **R语言中的实现** 以下是利用 R 的 `mice` 包来进行多重的具体代码示例: ```r library(mice) # 导入数据 data <- read.csv("path/to/your/data.csv") # 执行多重 (默认设置下运行5次) imp_data <- mice(data, m = 5, method = 'pmm', maxit = 50, seed = 500) # 查看摘要信息 summary(imp_data) # 提取其中一个完整数据集作为例子展示如何进一步分析 complete_data_1 <- complete(imp_data, 1) # 假设我们要做一个线性回归模型 fit <- with(imp_data, lm(y ~ x1 + x2)) # 合并所有模型的结果 pool_fit <- pool(fit) summary(pool_fit) ``` 此脚本展示了从加载外部文件开始直至建立回归关系结束整个工作流的操作细节[^4]。 --- ###
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

公众号Codewar原创作者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值