本地部署大模型的几种工具(上-相关使用)

目录

前言

为什么本地部署

目前的工具

vllm

介绍

下载模型

安装vllm

运行

存在问题

chatglm.cpp

介绍

下载

安装

运行

命令行运行

webdemo运行

GPU推理

ollama

介绍

下载

运行

运行不同参数量的模型

存在问题

lmstudio

介绍

下载

使用

下载模型文件

加载模型


前言

为什么本地部署

正常我们要调用大模型,就需要将企业或个人信息传递到外部的大模型服务器,这种情况在目前极为重视数据安全的情况下,可能就有问题了。但是,本地部署大模型就没有这个问题,本地部署大模型后,不需要联网即可调用大模型,就没有了通过调用外部大模型导致数据泄露的问题。

再一个一说起大模型,不管训练还是推理,一般都是需要GPU。能不能有一些方法实现本地也可以部署大模型进行推理?

以上也就是写这一篇的初衷了。

目前的工具

目前有vllm、chatglm.cpp(llama.cpp也类似是通过C++实现)--提供编程能力,可以命令行运行,可以提供webapi

Ollama--命令行运行,可以提供webapi

lmstudio--纯界面操作

vllm

介绍

vllm主要作用其实是可以提高推理性能,但是必须在linux下运行,而且必须有GPU

官网地址

vllm官网 Welcome to vLLM! — vLLMhttps://docs.vllm.ai/en/latest/

下载模型

这里以下载千问7B为例,由于模型文件会比较大,因此安装git的lfs插件

git lfs install
git clone https://huggingface.co/Qwen/Qwen-7B-Chat

安装vllm

安装的话,为了避免python环境冲突问题,先通过conda创建一个新的虚拟环境

然后pip install vllm

也可以先从github下载,再去安装

vllm github地址https://github.com/vllm-project/vllm

运行

python -m vllm.entrypoints.openai.api_server  --model="Qwen/Qwen-7B-Chat" --trust-remote-code --port 1234

注意:--model参数这里,如果之前已经下载了模型文件,这里是参数值改为模型文件路径,否则设置为模型名,然后会自动下载

注意2:通过aipost工具调用大模型,model参数需要和如上cmd运行命令的--model参数一致,否则会提示找不到model,这个我觉得是比较不好的一点

存在问题

1)通过apipost工具调用webapi,回答完,还会继续输出其他内容

一样,没搞懂为啥

补充:运行增加VLLM_USE_MODELSCOPE=True 推理速度会快很多,

### Deepseek R1 的本地部署与网络连接配置 #### 准备工作 为了成功在本地环境部署 Deepseek R1 并实现联网功能,需先完成必要的安装准备。这包括确认硬件条件满足最低要求以及软件环境的搭建[^2]。 #### 下载模型文件 访问指定路径下载所需版本的 Deepseek R1 模型文件到本地缓存目录下: ```bash /home/用户名/.cache/huggingface/hub/models--DeepSeek-R1-Distill-Qwen-7B/snapshots/ ``` 注意替换 `用户名` 为实际使用的账户名称[^1]。 #### 配置网络设置 对于希望使 Deepseek R1 能够通过互联网获取更新或与其他服务交互的情况,在启动前应适当调整防火墙规则和代理服务器设定以允许外部通信。如果是在企业内部署,则可能还需要遵循特定的安全策略来确保数据传输安全性和合规性。 #### 启动与验证 当一切就绪之后,可以通过命令行工具或其他图形界面应用程序加载已保存于本地磁盘上的预训练权重参数,并测试基本的功能是否正常运作。此时应该能够观察到即使断开Internet也不会影响核心算法逻辑执行的效果;而对于那些依赖在线资源的任务则会按照预先定义的方式处理异常状况或者提示用户采取相应措施恢复连通状态。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("/home/用户名/.cache/huggingface/hub/models--deepseek-ai--DeepSeek-R1-Distill-Qwen-7B/") model = AutoModelForCausalLM.from_pretrained("/home/用户名/.cache/huggingface/hub/models--deepseek-ai--DeepSeek-R1-Distill-Qwen-7B/") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值