作者Toby,原文来源公众号Python风控模型《上市企业逾期数据集和预测模型》
企业破产经典案例
经济下滑时期,企业面临诸多挑战,如市场需求减少、成本上升、融资困难等,这些因素都可能导致企业破产。以下是一些在经济下滑期间可能面临破产风险的企业案例:
-
零售业:随着电子商务的兴起和消费者购物习惯的改变,传统零售业受到巨大冲击。例如,Sears(西尔斯)在2018年申请破产保护,部分原因是无法适应市场变化和消费者需求。
-
汽车制造业:经济衰退期间,消费者可能会推迟大额购买,如汽车。例如,通用汽车(General Motors)在2009年经济大萧条期间申请了破产保护。
-
能源行业:油价波动对能源行业影响巨大。2020年,由于COVID-19疫情导致的需求下降,许多能源公司面临破产,如美国页岩油生产商切萨皮克能源公司(Chesapeake Energy)。
-
航空业:疫情导致的旅行限制对航空业造成了灾难性影响。例如,英国航空运营商弗莱比航空(Flybe)在2020年因疫情影响而破产。
-
旅游和酒店业:疫情同样对旅游和酒店业造成了重大打击。例如,旅游公司Thomas Cook在2019年因财务问题破产。
-
餐饮业:疫情导致的封锁和社交距离措施对餐饮业造成了严重影响。许多小型餐饮企业因无法承受收入下降而倒闭。
-
娱乐业:电影院和娱乐场所在疫情期间被迫关闭,导致收入大幅下降。例如,AMC电影院在疫情期间面临严重的财务压力。
-
制造业:全球供应链的中断和需求下降可能导致制造业企业破产。例如,玩具反斗城(Toys "R" Us)在2017年因债务问题申请破产。
-
金融服务业:经济不稳定可能导致金融服务业的信用风险增加。例如,2008年金融危机期间,雷曼兄弟(Lehman Brothers)因次贷危机而破产。
-
房地产业:经济衰退期间,房地产市场可能会受到冲击,导致房地产公司面临破产风险。例如,2008年金融危机期间,许多房地产公司因房价下跌和贷款违约而破产。
政府及时监控企业相关指标,及时预测破产概率,提前做好逆周期政策调节,对市场经济是非常重要稳定措施
企业破产数据集
为了响应诸多用户需求,Python风控建模实战案例数据库于2024年12月升级,新增多个企业破产数据集,其业务场景得到极大扩展,具体说明如下。
1.台湾10年上市企业破产预测数据集,包含接近100个财务变量
2.美国企业公司破产数据集
3.中国企业破除预测数据集。该数据集用于论文《使用图神经网络结合内部风险和传染风险进行企业破产预测》,包含2014年至2021年间中国3,976家中小企业及其相关人员,构成了一个多重企业知识图谱。所有企业都与其基本业务信息和从2000年到2021年的诉讼事件相关联。具体而言,企业业务信息包括注册资本、实收资本和成立时间。每个诉讼事件包括相关的原告、被告、主题、法院级别、结果和时间戳
我方公司还可以对下属数据库提供建模服务,为用户提供完整周期服务。
企业破产机器学习预测模型
企业破产预测是一个复杂的任务,它涉及到对企业财务状况、市场环境、管理能力等多方面因素的综合分析。机器学习预测模型可以通过分析历史数据来识别企业破产的潜在风险。以下是构建企业破产机器学习预测模型的一般步骤:
-
数据收集:收集企业的历史财务数据、市场数据、信用评级、行业信息等。
-
特征选择:从收集的数据中选择与企业破产相关的特征,如资产负债率、流动比率、净利润率、现金流量等。
-
数据预处理:对数据进行清洗,处理缺失值和异常值,进行归一化或标准化。
-
数据标注:确定目标变量,即企业是否破产。通常,这需要根据一定的时间窗口来判断企业是否在观察期内破产。
-
数据分割:将数据集分割为训练集和测试集,用于模型训练和评估。
-
模型选择:选择合适的机器学习算法。
-
模型训练:使用训练集数据训练选定的机器学习模型。
-
模型评估:使用测试集数据评估和验证模型的性能。
-
模型优化:根据评估结果调整模型参数,进行特征工程,或者尝试不同的算法来优化模型性能。
-
模型部署:将训练好的模型部署到生产环境中,用于实时或定期预测企业破产风险。
-
监控与维护:持续监控模型的表现,定期更新模型以适应市场变化。
在构建企业破产预测模型时,还需要注意以下几点:
-
数据质量:确保数据的准确性和完整性,因为低质量的数据会导致模型预测不准确。
-
特征工程:深入理解业务,选择和构建对预测企业破产有重要影响的特征。
-
模型解释性:在金融领域,模型的解释性很重要,需要能够解释模型的预测结果。
-
合规性:确保模型的构建和应用符合相关法律法规和行业标准。
企业破产预测模型是一个不断发展的领域,随着数据量的增加和算法的改进,预测的准确性和效率都在不断提高。
数据案例可用于建立华丽模型,发布论文专利,政府企业科研立项
数据案例可用于建立华丽模型,发布论文专利。
(模型自动化EDA统计图)
(KS和AUC,模型区分能力指标)
(评分分箱图)
(变量系数稳定性)
(信用额度分箱)
(PSI模型稳定性测评)
(变量重要性可视化)
版权声明:文章来自公众号(python风控模型),未经许可,不得抄袭。遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。