方法一:历史值一起上
1维预测
参考PKU的Tensorflow2教程
Xt 作为 Y
【Xt-1,……Xt-10】过去10天的历史值作为X
这样有很多对【X,Y】来预测
多维预测
https://blog.csdn.net/weixin_39653948/article/details/105352010
参考这个,也是用历史值
【X1,X2,X3】t-1
【X1,X2,X3】t-2
【X1,X2,X3】t-3
这样作为输入X,yt作为输出
方法二:主成分分析
《基于回声状态网络多变量预测模型的研究》
多维预测
在时间t,得到X1到Xn的滞后k期序列
X1 t,X1 t-1……X1 t-k
Xn t,X1 t-1……Xn t-k
以上形成V(t)
对V(t)进行主成分分析后降维,再当做输入变量送入网络
方法三:相关系数
多维预测
《基于回声状态网络的时间序列预测方法研究》
对方法一进行改进
看Xt与Xt-m的相关系数,哪个m值会使相关系数最大,取前几个(或者设定一个ρ的阙值如0/75)
比如m=2,6,20时最大
这样就把【Xt-2,Xt-6,Xt-20】当做输入