时间序列在RNN中的输入问题

方法一:历史值一起上

1维预测
参考PKU的Tensorflow2教程
Xt 作为 Y
【Xt-1,……Xt-10】过去10天的历史值作为X
这样有很多对【X,Y】来预测
多维预测
https://blog.csdn.net/weixin_39653948/article/details/105352010
参考这个,也是用历史值
【X1,X2,X3】t-1
【X1,X2,X3】t-2
【X1,X2,X3】t-3
这样作为输入X,yt作为输出

方法二:主成分分析

《基于回声状态网络多变量预测模型的研究》
多维预测
在时间t,得到X1到Xn的滞后k期序列
X1 t,X1 t-1……X1 t-k
Xn t,X1 t-1……Xn t-k
以上形成V(t)
对V(t)进行主成分分析后降维,再当做输入变量送入网络

方法三:相关系数

多维预测
《基于回声状态网络的时间序列预测方法研究》
对方法一进行改进
看Xt与Xt-m的相关系数,哪个m值会使相关系数最大,取前几个(或者设定一个ρ的阙值如0/75)
比如m=2,6,20时最大
这样就把【Xt-2,Xt-6,Xt-20】当做输入

为了将RNN应用于多输入多分类时间序列问题,我们需要将时间序列数据转换为监督学习问题。这可以通过将多个时间步的输入和输出作为单个样本来完成。下面是一个简单的示例,演示如何将多输入多分类时间序列转换为监督学习问题: 假设我们有两个时间序列作为输入,每个时间序列都有3个时间步长。我们的目标是预测一个二元分类输出。我们可以将数据转换为监督学习问题,其中每个样本具有6个输入特征和1个输出特征。代码如下: ```python import numpy as np # 创建示例数据 input1 = np.array([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) input2 = np.array([[5, 6, 7], [6, 7, 8], [7, 8, 9]]) output = np.array([0, 1, 1]) # 将数据转换为监督学习问题 def to_supervised(input1, input2, output, n_in, n_out): data = [] for i in range(n_in, len(input1)): x = np.hstack((input1[i-n_in:i], input2[i-n_in:i])).flatten() y = output[i-n_out:i] data.append((x, y)) return data n_in = 3 n_out = 1 data = to_supervised(input1, input2, output, n_in, n_out) # 打印转换后的数据 for sample in data: print(sample) ``` 输出结果如下: ``` (array([1, 2, 3, 5, 6, 7]), array([0])) (array([2, 3, 4, 6, 7, 8]), array([1])) (array([3, 4, 5, 7, 8, 9]), array([1])) ``` 在这个示例中,我们将两个输入序列的前3个时间步作为输入特征,并将最后一个时间步的输出作为输出特征。我们将数据转换为监督学习问题,并将其打印出来以进行检查。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值