opencv笔记

本文详细介绍了OpenCV中的图像处理技术,包括滤波操作如中值滤波、均值滤波、高斯滤波,以及图像阈值处理,如简单阈值、自适应阈值和Otsu二值化。此外,还提到了形态学中的腐蚀操作,用于去除图像中的噪声和细节。
摘要由CSDN通过智能技术生成

滤波

1:中值滤波:median=cv2.medianBlur(img,5)//5代表的是5×5为一个处理单位,中值滤波能够把所有噪音点一下子消除掉
2:均值滤波blur=cv2.blur(img,(3,3))
3:方框滤波,基本和中值滤波一样,可以选择归一化
box=cv2.boxfilter(img,-1,(3,3),nomarlize=True)
4:高斯滤波aussian=cv2.GaussianBlur(img,(5,5),1)

图像阈值

1:简单阈值,如果像素点小于阈值,则设置为0,否则将其设置为最大值,第一个参数为源图像,第二个图像为阈值,第三个参数是分配给超过阈值的像素值的最大值,简单阈值类型有cv.THRESH_BINARY
cv.THRESH_BINARY_INV
cv.THRESH_TRUNC
cv.THRESH_TOZERO
cv.THRESH_TOZERO_INV
exp:
ret,thresh1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
ret,thresh2 = cv.threshold(img,127,255,cv.THRESH_BINARY_INV)
ret,thresh3 = cv.threshold(img,127,255,cv.THRESH_TRUNC)
ret,thresh4 = cv.threshold(img,127,255,cv.THRESH_TOZERO)
ret,thresh5 = cv.threshold(img,127,255,cv.THRESH_TOZERO_INV)

2:自适应阈值,但这可能并非在所有情况下都很好,例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值